These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27288501)

  • 21. Inferring rare disease risk variants based on exact probabilities of sharing by multiple affected relatives.
    Bureau A; Younkin SG; Parker MM; Bailey-Wilson JE; Marazita ML; Murray JC; Mangold E; Albacha-Hejazi H; Beaty TH; Ruczinski I
    Bioinformatics; 2014 Aug; 30(15):2189-96. PubMed ID: 24740360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HEALER: homomorphic computation of ExAct Logistic rEgRession for secure rare disease variants analysis in GWAS.
    Wang S; Zhang Y; Dai W; Lauter K; Kim M; Tang Y; Xiong H; Jiang X
    Bioinformatics; 2016 Jan; 32(2):211-8. PubMed ID: 26446135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From Wet-Lab to Variations: Concordance and Speed of Bioinformatics Pipelines for Whole Genome and Whole Exome Sequencing.
    Laurie S; Fernandez-Callejo M; Marco-Sola S; Trotta JR; Camps J; Chacón A; Espinosa A; Gut M; Gut I; Heath S; Beltran S
    Hum Mutat; 2016 Dec; 37(12):1263-1271. PubMed ID: 27604516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactive Exploration, Analysis, and Visualization of Complex Phenome-Genome Datasets with ASPIREdb.
    Tan PP; Rogic S; Zoubarev A; McDonald C; Lui F; Charathsandran G; Jacobson M; Belmadani M; Leong J; Van Rossum T; Portales-Casamar E; Qiao Y; Calli K; Liu X; Hudson M; Rajcan-Separovic E; Lewis MS; Pavlidis P
    Hum Mutat; 2016 Aug; 37(8):719-26. PubMed ID: 27158917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the digenic model in rare disorders using population sequencing data.
    Moreno-Ruiz N; ; Lao O; Aróstegui JI; Laayouni H; Casals F
    Eur J Hum Genet; 2022 Dec; 30(12):1439-1443. PubMed ID: 36192439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can whole-exome sequencing data be used for linkage analysis?
    Gazal S; Gosset S; Verdura E; Bergametti F; Guey S; Babron MC; Tournier-Lasserve E
    Eur J Hum Genet; 2016 Apr; 24(4):581-6. PubMed ID: 26173971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CLAMMS: a scalable algorithm for calling common and rare copy number variants from exome sequencing data.
    Packer JS; Maxwell EK; O'Dushlaine C; Lopez AE; Dewey FE; Chernomorsky R; Baras A; Overton JD; Habegger L; Reid JG
    Bioinformatics; 2016 Jan; 32(1):133-5. PubMed ID: 26382196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical sequencing: is WGS the better WES?
    Meienberg J; Bruggmann R; Oexle K; Matyas G
    Hum Genet; 2016 Mar; 135(3):359-62. PubMed ID: 26742503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GeneVetter: a web tool for quantitative monogenic assessment of rare diseases.
    Gillies CE; Robertson CC; Sampson MG; Kang HM
    Bioinformatics; 2015 Nov; 31(22):3682-4. PubMed ID: 26209433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Validation of Clinical Whole-Exome and Whole-Genome Sequencing for Detection of Germline Variants in Inherited Disease.
    Hegde M; Santani A; Mao R; Ferreira-Gonzalez A; Weck KE; Voelkerding KV
    Arch Pathol Lab Med; 2017 Jun; 141(6):798-805. PubMed ID: 28362156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.
    Zare F; Dow M; Monteleone N; Hosny A; Nabavi S
    BMC Bioinformatics; 2017 May; 18(1):286. PubMed ID: 28569140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of exome sequencing in the search for genetic causes of rare disorders of copper metabolism.
    Fuchs SA; Harakalova M; van Haaften G; van Hasselt PM; Cuppen E; Houwen RH
    Metallomics; 2012 Jul; 4(7):606-13. PubMed ID: 22555275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concordance between whole-exome sequencing and clinical Sanger sequencing: implications for patient care.
    Hamilton A; Tétreault M; Dyment DA; Zou R; Kernohan K; Geraghty MT; ; ; Hartley T; Boycott KM
    Mol Genet Genomic Med; 2016 Sep; 4(5):504-12. PubMed ID: 27652278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The clinical utility of whole-exome sequencing in the context of rare diseases - the changing tides of medical practice.
    Nguyen MT; Charlebois K
    Clin Genet; 2015 Oct; 88(4):313-9. PubMed ID: 25421945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.
    Wang W; Wang W; Sun W; Crowley JJ; Szatkiewicz JP
    Nucleic Acids Res; 2015 Aug; 43(14):e90. PubMed ID: 25883151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cancer whole-genome sequencing: present and future.
    Nakagawa H; Wardell CP; Furuta M; Taniguchi H; Fujimoto A
    Oncogene; 2015 Dec; 34(49):5943-50. PubMed ID: 25823020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A haplotype-based framework for group-wise transmission/disequilibrium tests for rare variant association analysis.
    Chen R; Wei Q; Zhan X; Zhong X; Sutcliffe JS; Cox NJ; Cook EH; Li C; Chen W; Li B
    Bioinformatics; 2015 May; 31(9):1452-9. PubMed ID: 25568282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A likelihood ratio-based method to predict exact pedigrees for complex families from next-generation sequencing data.
    Heinrich V; Kamphans T; Mundlos S; Robinson PN; Krawitz PM
    Bioinformatics; 2017 Jan; 33(1):72-78. PubMed ID: 27565584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical points for an accurate human genome analysis.
    White SJ; Laros JFJ; Bakker E; Cambon-Thomsen A; Eden M; Leonard S; Lochmüller H; Matthijs G; Mattocks C; Patton S; Payne K; Scheffer H; Souche E; Thomassen E; Thompson R; Traeger-Synodinos J; Van Vooren S; Janssen B; den Dunnen JT
    Hum Mutat; 2017 Aug; 38(8):912-921. PubMed ID: 28471515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole genome and exome sequencing realignment supports the assignment of KCNJ12, KCNJ17, and KCNJ18 paralogous genes in thyrotoxic periodic paralysis locus: functional characterization of two polymorphic Kir2.6 isoforms.
    Paninka RM; Mazzotti DR; Kizys MM; Vidi AC; Rodrigues H; Silva SP; Kunii IS; Furuzawa GK; Arcisio-Miranda M; Dias-da-Silva MR
    Mol Genet Genomics; 2016 Aug; 291(4):1535-44. PubMed ID: 27008341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.