BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27289001)

  • 1. Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones.
    Peters C; Rudroff F; Mihovilovic MD; T Bornscheuer U
    Biol Chem; 2017 Jan; 398(1):31-37. PubMed ID: 27289001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled reactions by coupled enzymes: alcohol to lactone cascade with alcohol dehydrogenase-cyclohexanone monooxygenase fusions.
    Aalbers FS; Fraaije MW
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7557-7565. PubMed ID: 28916997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer-Villiger monooxygenase.
    Oberleitner N; Peters C; Rudroff F; Bornscheuer UT; Mihovilovic MD
    J Biotechnol; 2014 Dec; 192 Pt B():393-9. PubMed ID: 24746588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C3 and C6 Modification-Specific OYE Biotransformations of Synthetic Carvones and Sequential BVMO Chemoenzymatic Synthesis of Chiral Caprolactones.
    Issa IS; Toogood HS; Johannissen LO; Raftery J; Scrutton NS; Gardiner JM
    Chemistry; 2019 Feb; 25(12):2983-2988. PubMed ID: 30468546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Baeyer-Villiger monooxygenases in aroma compound synthesis.
    Fink MJ; Rudroff F; Mihovilovic MD
    Bioorg Med Chem Lett; 2011 Oct; 21(20):6135-8. PubMed ID: 21900007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of ɛ-caprolactone from cyclohexanol.
    Mallin H; Wulf H; Bornscheuer UT
    Enzyme Microb Technol; 2013 Sep; 53(4):283-7. PubMed ID: 23931695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters.
    Jeon EY; Baek AH; Bornscheuer UT; Park JB
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6267-75. PubMed ID: 25636834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactone-bound structures of cyclohexanone monooxygenase provide insight into the stereochemistry of catalysis.
    Yachnin BJ; McEvoy MB; MacCuish RJ; Morley KL; Lau PC; Berghuis AM
    ACS Chem Biol; 2014 Dec; 9(12):2843-51. PubMed ID: 25265531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blending Baeyer-Villiger monooxygenases: using a robust BVMO as a scaffold for creating chimeric enzymes with novel catalytic properties.
    van Beek HL; de Gonzalo G; Fraaije MW
    Chem Commun (Camb); 2012 Apr; 48(27):3288-90. PubMed ID: 22286124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases.
    Alphand V; Carrea G; Wohlgemuth R; Furstoss R; Woodley JM
    Trends Biotechnol; 2003 Jul; 21(7):318-23. PubMed ID: 12837617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-enzyme cascade reaction for the production of 6-hydroxyhexanoic acid.
    Srinivasamurthy VST; Böttcher D; Bornscheuer UT
    Z Naturforsch C J Biosci; 2019 Feb; 74(3-4):71-76. PubMed ID: 30685749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a new Baeyer-Villiger monooxygenase and conversion to a solely N-or S-oxidizing enzyme by a single R292 mutation.
    Catucci G; Zgrablic I; Lanciani F; Valetti F; Minerdi D; Ballou DP; Gilardi G; Sadeghi SJ
    Biochim Biophys Acta; 2016 Sep; 1864(9):1177-1187. PubMed ID: 27344049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadening the scope of Baeyer-Villiger monooxygenase activities toward α,β-unsaturated ketones: a promising route to chiral enol-lactones and ene-lactones.
    Reignier T; de Berardinis V; Petit JL; Mariage A; Hamzé K; Duquesne K; Alphand V
    Chem Commun (Camb); 2014 Jul; 50(58):7793-6. PubMed ID: 24903773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Substrate Scope of Baeyer-Villiger Monooxygenases with Branched Lactones as Entry towards Polyesters.
    Delgove MAF; Fürst MJLJ; Fraaije MW; Bernaerts KV; De Wildeman SMA
    Chembiochem; 2018 Feb; 19(4):354-360. PubMed ID: 29078017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving catalytic activity of the Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid.
    Woo JM; Jeon EY; Seo EJ; Seo JH; Lee DY; Yeon YJ; Park JB
    Sci Rep; 2018 Jul; 8(1):10280. PubMed ID: 29980730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkyl Formate Ester Synthesis by a Fungal Baeyer-Villiger Monooxygenase.
    Ferroni FM; Tolmie C; Smit MS; Opperman DJ
    Chembiochem; 2017 Mar; 18(6):515-517. PubMed ID: 28075512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal BVMOs as alternatives to cyclohexanone monooxygenase.
    Mthethwa KS; Kassier K; Engel J; Kara S; Smit MS; Opperman DJ
    Enzyme Microb Technol; 2017 Nov; 106():11-17. PubMed ID: 28859804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and Engineering of a Novel Baeyer-Villiger Monooxygenase with High Normal Regioselectivity.
    Zhang GX; You ZN; Yu JM; Liu YY; Pan J; Xu JH; Li CX
    Chembiochem; 2021 Apr; 22(7):1190-1195. PubMed ID: 33205522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase.
    Liu YY; Li CX; Xu JH; Zheng GW
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of conformational flexibility in Baeyer-Villiger monooxygenase catalysis and structure.
    Yachnin BJ; Lau PCK; Berghuis AM
    Biochim Biophys Acta; 2016 Dec; 1864(12):1641-1648. PubMed ID: 27570148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.