BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27289207)

  • 1. Chlorpyrifos-methyl solubilisation by humic acids used as bio-surfactants extracted from lignocelluloses and kitchen wastes.
    Scaglia B; Baglieri A; Tambone F; Gennari M; Adani F
    Chemosphere; 2016 Sep; 159():208-213. PubMed ID: 27289207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubility and adsorption behaviors of chlorpyriphos-methyl in the presence of surfactants.
    Gennari M; Messina C; Abbate C; Baglieri A; Boursier C
    J Environ Sci Health B; 2009 Mar; 44(3):235-40. PubMed ID: 19280476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biobased surfactant-like molecules from organic wastes: the effect of waste composition and composting process on surfactant properties and on the ability to solubilize Tetrachloroethene (PCE).
    Quadri G; Chen X; Jawitz JW; Tambone F; Genevini P; Faoro F; Adani F
    Environ Sci Technol; 2008 Apr; 42(7):2618-23. PubMed ID: 18505006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation.
    Montoneri E; Boffa V; Savarino P; Tambone F; Adani F; Micheletti L; Gianotti C; Chiono R
    Waste Manag; 2009 Jan; 29(1):383-9. PubMed ID: 18346886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant properties and tetrachloroethene (PCE) solubilisation ability of humic acid-like substances extracted from maize plant and from organic wastes: a comparative study.
    Adani F; Tambone F; Davoli E; Scaglia B
    Chemosphere; 2010 Feb; 78(8):1017-22. PubMed ID: 20044126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspective on the use of humic acids from biomass as natural surfactants for industrial applications.
    Salati S; Papa G; Adani F
    Biotechnol Adv; 2011; 29(6):913-22. PubMed ID: 21827846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation.
    Yang F; Zhang S; Cheng K; Antonietti M
    Sci Total Environ; 2019 Oct; 686():1140-1151. PubMed ID: 31412510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil.
    Pei G; Zhu Y; Cai X; Shi W; Li H
    Chemosphere; 2017 Oct; 185():1112-1121. PubMed ID: 28772354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of ionic surfactants to purified humic acid.
    Koopal LK; Goloub TP; Davis TA
    J Colloid Interface Sci; 2004 Jul; 275(2):360-7. PubMed ID: 15178260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils.
    Conte P; Agretto A; Spaccini R; Piccolo A
    Environ Pollut; 2005 Jun; 135(3):515-22. PubMed ID: 15749548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of surfactants for the remediation of contaminated soils: a review.
    Mao X; Jiang R; Xiao W; Yu J
    J Hazard Mater; 2015 Mar; 285():419-35. PubMed ID: 25528485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemicals from wastes: compost-derived humic acid-like matter as surfactant.
    Quagliotto P; Montoneri E; Tambone F; Adani F; Gobetto R; Viscardi G
    Environ Sci Technol; 2006 Mar; 40(5):1686-92. PubMed ID: 16568788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addition of (bio)surfactants in the biofiltration of hydrophobic volatile organic compounds in air.
    Lamprea-Pineda PA; Demeestere K; González-Cortés JJ; Boon N; Devlieghere F; Van Langenhove H; Walgraeve C
    J Environ Manage; 2024 Feb; 353():120132. PubMed ID: 38286067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Nanoparticles Interaction with Humic Acid: In the Presence of Surfactants.
    Tang Z; Zhao X; Zhao T; Wang H; Wang P; Wu F; Giesy JP
    Environ Sci Technol; 2016 Aug; 50(16):8640-8. PubMed ID: 27404337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leonardite-derived humic substances are great adsorbents for cadmium.
    Meng F; Yuan G; Wei J; Bi D; Wang H
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23006-23014. PubMed ID: 28822093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergism in the desorption of polycyclic aromatic hydrocarbons from soil models by mixed surfactant solutions.
    Sales PS; Fernández MA
    Environ Sci Pollut Res Int; 2016 May; 23(10):10158-64. PubMed ID: 26873826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosurfactants from urban green waste.
    Montoneri E; Boffa V; Savarino P; Perrone DG; Musso G; Mendichi R; Chierotti MR; Gobetto R
    ChemSusChem; 2009; 2(3):239-47. PubMed ID: 19229894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction mechanisms between polycyclic aromatic hydrocarbons (PAHs) and organic soil washing agents.
    Greish S; Rinnan Å; Marcussen H; Holm PE; Christensen JH
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):299-311. PubMed ID: 29034424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization and desorption of methyl-parathion from porous media: a comparison of hydroxypropyl-beta-cyclodextrin and two nonionic surfactants.
    Zeng QR; Tang HX; Liao BH; Zhong T; Tang C
    Water Res; 2006 Apr; 40(7):1351-8. PubMed ID: 16540145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.