BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 27289380)

  • 1. Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels.
    Darling NJ; Hung YS; Sharma S; Segura T
    Biomaterials; 2016 Sep; 101():199-206. PubMed ID: 27289380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of thiol-maleimide reaction kinetics in PEG hydrogel networks.
    Jansen LE; Negrón-Piñeiro LJ; Galarza S; Peyton SR
    Acta Biomater; 2018 Apr; 70():120-128. PubMed ID: 29452274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapidly in situ forming adhesive hydrogel based on a PEG-maleimide modified polypeptide through Michael addition.
    Zhou Y; Nie W; Zhao J; Yuan X
    J Mater Sci Mater Med; 2013 Oct; 24(10):2277-86. PubMed ID: 23797826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition.
    Fu Y; Kao WJ
    J Biomed Mater Res A; 2011 Aug; 98(2):201-11. PubMed ID: 21548071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation.
    Paez JI; Farrukh A; Valbuena-Mendoza R; Włodarczyk-Biegun MK; Del Campo A
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8062-8072. PubMed ID: 31999422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injectable Shape-Holding Collagen Hydrogel for Cell Encapsulation and Delivery Cross-linked Using Thiol-Michael Addition Click Reaction.
    Pupkaite J; Rosenquist J; Hilborn J; Samanta A
    Biomacromolecules; 2019 Sep; 20(9):3475-3484. PubMed ID: 31408340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers.
    Yu Y; Deng C; Meng F; Shi Q; Feijen J; Zhong Z
    J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking.
    Cellesi F; Tirelli N; Hubbell JA
    Biomaterials; 2004 Sep; 25(21):5115-24. PubMed ID: 15109835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility.
    Fu H; Yu C; Li X; Bao H; Zhang B; Chen Z; Zhang Z
    J Mater Chem B; 2021 Dec; 9(48):10003-10014. PubMed ID: 34874044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable synthetic hydrogel for bone regeneration: Physicochemical characterisation of a high and a low pH gelling system.
    Schweikle M; Zinn T; Lund R; Tiainen H
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():67-76. PubMed ID: 29853138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogels cross-linked by native chemical ligation.
    Hu BH; Su J; Messersmith PB
    Biomacromolecules; 2009 Aug; 10(8):2194-200. PubMed ID: 19601644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition.
    Kim J; Kong YP; Niedzielski SM; Singh RK; Putnam AJ; Shikanov A
    Soft Matter; 2016 Feb; 12(7):2076-85. PubMed ID: 26750719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of PEG-carboxymethylcellulose hydrogel by thiol-norbornene photo-click chemistry.
    Lee S; Park YH; Ki CS
    Int J Biol Macromol; 2016 Feb; 83():1-8. PubMed ID: 26616448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modular and Adaptable Tumor Niche Prepared from Visible Light Initiated Thiol-Norbornene Photopolymerization.
    Shih H; Greene T; Korc M; Lin CC
    Biomacromolecules; 2016 Dec; 17(12):3872-3882. PubMed ID: 27936722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor.
    Cai S; Liu Y; Zheng Shu X; Prestwich GD
    Biomaterials; 2005 Oct; 26(30):6054-67. PubMed ID: 15958243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
    Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC
    Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indispensable platforms for bioimmobilization: maleimide-based thiol reactive hydrogels.
    Park EJ; Gevrek TN; Sanyal R; Sanyal A
    Bioconjug Chem; 2014 Nov; 25(11):2004-11. PubMed ID: 25250772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry.
    Shih H; Lin CC
    Biomacromolecules; 2012 Jul; 13(7):2003-12. PubMed ID: 22708824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.