These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 27289392)
1. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. Ellis LA; Valsami-Jones E; Lead JR; Baalousha M Sci Total Environ; 2016 Oct; 568():95-106. PubMed ID: 27289392 [TBL] [Abstract][Full Text] [Related]
2. Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles. Afshinnia K; Marrone B; Baalousha M Sci Total Environ; 2018 Jun; 625():1518-1526. PubMed ID: 29996448 [TBL] [Abstract][Full Text] [Related]
3. Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. Ellis LA; Baalousha M; Valsami-Jones E; Lead JR Chemosphere; 2018 Jan; 191():616-625. PubMed ID: 29073569 [TBL] [Abstract][Full Text] [Related]
4. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Angel BM; Batley GE; Jarolimek CV; Rogers NJ Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009 [TBL] [Abstract][Full Text] [Related]
5. Particle coating-dependent interaction of molecular weight fractionated natural organic matter: impacts on the aggregation of silver nanoparticles. Yin Y; Shen M; Tan Z; Yu S; Liu J; Jiang G Environ Sci Technol; 2015 Jun; 49(11):6581-9. PubMed ID: 25941838 [TBL] [Abstract][Full Text] [Related]
6. Impact of light and Suwanee River Fulvic Acid on O Rong H; Garg S; Waite TD Environ Sci Technol; 2019 Jun; 53(12):6688-6698. PubMed ID: 31090416 [TBL] [Abstract][Full Text] [Related]
7. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters. Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354 [TBL] [Abstract][Full Text] [Related]
8. Silver nanoparticle behaviour in lake water depends on their surface coating. Jiménez-Lamana J; Slaveykova VI Sci Total Environ; 2016 Dec; 573():946-953. PubMed ID: 27599058 [TBL] [Abstract][Full Text] [Related]
9. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319 [TBL] [Abstract][Full Text] [Related]
10. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles. Zhao J; Li Y; Wang X; Xia X; Shang E; Ali J Environ Pollut; 2021 Jun; 279():116926. PubMed ID: 33751945 [TBL] [Abstract][Full Text] [Related]
11. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation. Zou X; Shi J; Zhang H J Hazard Mater; 2015 Jul; 292():61-9. PubMed ID: 25795274 [TBL] [Abstract][Full Text] [Related]
12. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Li Y; Zhang W; Niu J; Chen Y Environ Sci Technol; 2013 Sep; 47(18):10293-301. PubMed ID: 23952964 [TBL] [Abstract][Full Text] [Related]
13. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Unrine JM; Colman BP; Bone AJ; Gondikas AP; Matson CW Environ Sci Technol; 2012 Jul; 46(13):6915-24. PubMed ID: 22452441 [TBL] [Abstract][Full Text] [Related]
14. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles. Stoiber T; Croteau MN; Römer I; Tejamaya M; Lead JR; Luoma SN Nanotoxicology; 2015; 9(7):918-27. PubMed ID: 25676617 [TBL] [Abstract][Full Text] [Related]
15. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter. Akaighe N; Depner SW; Banerjee S; Sharma VK; Sohn M Sci Total Environ; 2012 Dec; 441():277-89. PubMed ID: 23164532 [TBL] [Abstract][Full Text] [Related]
16. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity. Gunsolus IL; Mousavi MP; Hussein K; Bühlmann P; Haynes CL Environ Sci Technol; 2015 Jul; 49(13):8078-86. PubMed ID: 26047330 [TBL] [Abstract][Full Text] [Related]
17. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen. Zou X; Li P; Lou J; Fu X; Zhang H Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772 [TBL] [Abstract][Full Text] [Related]
18. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation. Bone AJ; Colman BP; Gondikas AP; Newton KM; Harrold KH; Cory RM; Unrine JM; Klaine SJ; Matson CW; Di Giulio RT Environ Sci Technol; 2012 Jul; 46(13):6925-33. PubMed ID: 22680837 [TBL] [Abstract][Full Text] [Related]