BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2728980)

  • 1. Mechanisms of intestinal brush border iron transport.
    Simpson RJ; Raja KB; Peters TJ
    Adv Exp Med Biol; 1989; 249():27-34. PubMed ID: 2728980
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies of Fe3+ transport across isolated intestinal brush-border membrane of the mouse.
    Simpson RJ; Peters TJ
    Biochim Biophys Acta; 1984 May; 772(2):220-6. PubMed ID: 6426513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe2+ uptake by mouse intestinal mucosa in vivo and by isolated intestinal brush-border membrane vesicles.
    Simpson RJ; Raja KB; Peters TJ
    Biochim Biophys Acta; 1986 Aug; 860(2):229-35. PubMed ID: 3741852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1995 May; 125(5):1291-9. PubMed ID: 7738689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of reductive mechanisms for intestinal uptake of iron from ferric maltol and ferric nitrilotriacetic acid (NTA).
    Barrand MA; Hider RC; Callingham BA
    J Pharm Pharmacol; 1990 Apr; 42(4):279-82. PubMed ID: 1974298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Ca2+ and Mg2+ on the uptake of Fe3+ by mouse intestinal mucosa.
    Raja KB; Simpson RJ; Peters TJ
    Biochim Biophys Acta; 1987 Jan; 923(1):46-51. PubMed ID: 3801516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An iron-regulated ferric reductase associated with the absorption of dietary iron.
    McKie AT; Barrow D; Latunde-Dada GO; Rolfs A; Sager G; Mudaly E; Mudaly M; Richardson C; Barlow D; Bomford A; Peters TJ; Raja KB; Shirali S; Hediger MA; Farzaneh F; Simpson RJ
    Science; 2001 Mar; 291(5509):1755-9. PubMed ID: 11230685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of non-esterified fatty acids in iron uptake by intestinal brush-border membrane vesicles.
    Simpson RJ; Moore R; Peters TJ
    Biochim Biophys Acta; 1988 Jun; 941(1):39-47. PubMed ID: 3370211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-sensitive transport of Fe2+ across purified brush-border membrane from mouse intestine.
    Simpson RJ; Peters TJ
    Biochim Biophys Acta; 1986 Mar; 856(1):109-14. PubMed ID: 3955029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse intestinal Fe3+ uptake kinetics in vivo. The significance of brush-border membrane vesicle transport in the mechanism of mucosal Fe3+ uptake.
    Simpson RJ; Peters TJ
    Biochim Biophys Acta; 1986 Mar; 856(1):115-22. PubMed ID: 3955030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the role of iron binding ligands and the intestinal brush border receptors in iron absorption.
    Rao BS; Rao KS
    Indian J Biochem Biophys; 1992 Apr; 29(2):214-8. PubMed ID: 1398716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the role of transferrin and endocytosis in the uptake of Fe3+ from Fe-nitrilotriacetate by mouse duodenum.
    Simpson RJ; Osterloh KR; Raja KB; Snape SD; Peters TJ
    Biochim Biophys Acta; 1986 Oct; 884(1):166-71. PubMed ID: 3768410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of 1alpha-hydroxyvitamin D3 administration on calcium transport in chick intestine brush border membrane vesicles.
    Rasmussen H; Fontaine O; Max EE; Goodman DB
    J Biol Chem; 1979 Apr; 254(8):2993-9. PubMed ID: 429331
    [No Abstract]   [Full Text] [Related]  

  • 14. Dependence of intestinal iron absorption on the valency state of iron.
    Wollenberg P; Rummel W
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Nov; 336(5):578-82. PubMed ID: 3125486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of ferric nitrilotriacetate and ferrozine in iron transport studies.
    Marx JJ
    Eur J Clin Invest; 1995 Oct; 25(10):721. PubMed ID: 8557057
    [No Abstract]   [Full Text] [Related]  

  • 16. Separate pathways for cellular uptake of ferric and ferrous iron.
    Conrad ME; Umbreit JN; Moore EG; Hainsworth LN; Porubcin M; Simovich MJ; Nakada MT; Dolan K; Garrick MD
    Am J Physiol Gastrointest Liver Physiol; 2000 Oct; 279(4):G767-74. PubMed ID: 11005764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms involved in increased iron uptake across rat duodenal brush-border membrane during hypoxia.
    O'Riordan DK; Debnam ES; Sharp PA; Simpson RJ; Taylor EM; Srai SK
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):379-84. PubMed ID: 9147325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A target for cholesterol absorption inhibitors in the enterocyte brush border membrane.
    Detmers PA; Patel S; Hernandez M; Montenegro J; Lisnock JM; Pikounis B; Steiner M; Kim D; Sparrow C; Chao YS; Wright SD
    Biochim Biophys Acta; 2000 Jul; 1486(2-3):243-52. PubMed ID: 10903475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability and the mechanisms of intestinal absorption of iron from ferrous ascorbate and ferric polymaltose in experimental animals.
    Johnson G; Jacobs P
    Exp Hematol; 1990 Nov; 18(10):1064-9. PubMed ID: 2209759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of oral iron chelator L1 on iron absorption in man.
    Dresow B; Fischer R; Nielsen P; Gabbe EE; Piga A
    Ann N Y Acad Sci; 1998 Jun; 850():466-8. PubMed ID: 9668586
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.