BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 27290727)

  • 1. Characterization of two key enzymes for aromatic amino acid biosynthesis in symbiotic archaea.
    Shlaifer I; Turnbull JL
    Extremophiles; 2016 Jul; 20(4):503-14. PubMed ID: 27290727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of TyrA enzymes from Ignicoccus hospitalis and Haemophilus influenzae: A comparative study of the bifunctional and monofunctional dehydrogenase forms.
    Shlaifer I; Quashie PK; Kim HY; Turnbull JL
    Biochim Biophys Acta Proteins Proteom; 2017 Mar; 1865(3):312-320. PubMed ID: 28025081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of phenylalanine and tyrosine biosynthesis in Pseudomonas aureofaciens ATCC 15926.
    Blumenstock E; Salcher O; Lingens F
    J Gen Microbiol; 1980 Mar; 117(1):81-7. PubMed ID: 7391822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the catalytic mechanism of prephenate dehydratase by site-directed mutagenesis of the Escherichia coli P-protein dehydratase domain.
    Zhang S; Wilson DB; Ganem B
    Biochemistry; 2000 Apr; 39(16):4722-8. PubMed ID: 10769128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Chorismate mutase-prephenate dehydratase and prephenate dehydrogenase from alcaligenes eutrophus.
    Friedrich CG; Friedrich B; Schlegel HG
    J Bacteriol; 1976 May; 126(2):723-32. PubMed ID: 4432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a key trifunctional enzyme for aromatic amino acid biosynthesis in Archaeoglobus fulgidus.
    Lim S; Springstead JR; Yu M; Bartkowski W; Schröder I; Monbouquette HG
    Extremophiles; 2009 Jan; 13(1):191-8. PubMed ID: 19082689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Degradation and biosynthesis of L-phenylalanine by chloridazon-degrading bacteria].
    Buck R; Eberspächer J; Lingens F
    Hoppe Seylers Z Physiol Chem; 1979 Jul; 360(7):957-69. PubMed ID: 488918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and properties of chorismate mutase-prephenate dehydratase and prephenate dehydrogenase from Alcaligenes eutrophus.
    Friedrich B; Friedrich CG; Schlegel HG
    J Bacteriol; 1976 May; 126(2):712-22. PubMed ID: 1262315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins.
    Zhang S; Pohnert G; Kongsaeree P; Wilson DB; Clardy J; Ganem B
    J Biol Chem; 1998 Mar; 273(11):6248-53. PubMed ID: 9497350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An engineered chorismate mutase with allosteric regulation.
    Zhang S; Wilson DB; Ganem B
    Bioorg Med Chem; 2003 Jul; 11(14):3109-14. PubMed ID: 12818673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biosynthesis of phenylalanine and tyrosine in Flavobacteria].
    Waldner-Sander S; Keller B; Keller E; Lingens F
    Hoppe Seylers Z Physiol Chem; 1983 Oct; 364(10):1467-73. PubMed ID: 6642432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Saridakis VC; Turnbull JL
    Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis.
    Tzin V; Malitsky S; Aharoni A; Galili G
    Plant J; 2009 Oct; 60(1):156-67. PubMed ID: 19508381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (De)regulation of key enzyme steps in the shikimate pathway and phenylalanine-specific pathway of the actinomycete Amycolatopsis methanolica.
    Kloosterman H; Hessels GI; Vrijbloed JW; Euverink GJ; Dijkhuizen L
    Microbiology (Reading); 2003 Nov; 149(Pt 11):3321-3330. PubMed ID: 14600244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for L-tyrosine production by expression of genes coding for the chorismate mutase domain of the native chorismate mutase-prephenate dehydratase and a cyclohexadienyl dehydrogenase from Zymomonas mobilis.
    Chávez-Béjar MI; Lara AR; López H; Hernández-Chávez G; Martinez A; Ramírez OT; Bolívar F; Gosset G
    Appl Environ Microbiol; 2008 May; 74(10):3284-90. PubMed ID: 18344329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absolute dependence of phenylalanine and tyrosine biosynthetic enzyme on tryptophan in Candida maltosa.
    Bode R; Melo C; Birnbaum D
    Hoppe Seylers Z Physiol Chem; 1984 Jul; 365(7):799-803. PubMed ID: 6479898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback inhibition of chorismate mutase/prephenate dehydrogenase (TyrA) of Escherichia coli: generation and characterization of tyrosine-insensitive mutants.
    Lütke-Eversloh T; Stephanopoulos G
    Appl Environ Microbiol; 2005 Nov; 71(11):7224-8. PubMed ID: 16269762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pheA (Rv3838c) of Mycobacterium tuberculosis encodes an allosterically regulated monofunctional prephenate dehydratase that requires both catalytic and regulatory domains for optimum activity.
    Prakash P; Pathak N; Hasnain SE
    J Biol Chem; 2005 May; 280(21):20666-71. PubMed ID: 15753077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of active site residues of chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Turnbull J
    Biochemistry; 1996 Apr; 35(14):4468-79. PubMed ID: 8605196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of chorismate mutase and prephenate dehydrogenase domains in the Escherichia coli T-protein.
    Chen S; Vincent S; Wilson DB; Ganem B
    Eur J Biochem; 2003 Feb; 270(4):757-63. PubMed ID: 12581215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.