These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27291050)

  • 1. Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements.
    Wutz A; Muschter E; van Koningsbruggen MG; Weisz N; Melcher D
    Curr Biol; 2016 Jul; 26(13):1659-1668. PubMed ID: 27291050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.
    Ronconi L; Melcher D
    J Neurosci; 2017 Nov; 37(44):10636-10644. PubMed ID: 28972130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccadic reaction times to audiovisual stimuli show effects of oscillatory phase reset.
    Diederich A; Schomburg A; Colonius H
    PLoS One; 2012; 7(10):e44910. PubMed ID: 23056186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency modulation of neural oscillations according to visual task demands.
    Wutz A; Melcher D; Samaha J
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1346-1351. PubMed ID: 29358390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple oscillatory rhythms determine the temporal organization of perception.
    Ronconi L; Oosterhof NN; Bonmassar C; Melcher D
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13435-13440. PubMed ID: 29203678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fronto-central theta oscillations are related to oscillations in saccadic response times (SRT): an EEG and behavioral data analysis.
    Diederich A; Schomburg A; van Vugt M
    PLoS One; 2014; 9(11):e112974. PubMed ID: 25405521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MEG-based decoding of the spatiotemporal dynamics of visual category perception.
    van de Nieuwenhuijzen ME; Backus AR; Bahramisharif A; Doeller CF; Jensen O; van Gerven MA
    Neuroimage; 2013 Dec; 83():1063-73. PubMed ID: 23927900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recalibration of the multisensory temporal window of integration results from changing task demands.
    Mégevand P; Molholm S; Nayak A; Foxe JJ
    PLoS One; 2013; 8(8):e71608. PubMed ID: 23951203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using temporally aligned event-related potentials for the investigation of attention shifts prior to and during saccades.
    Huber-Huber C; Ditye T; Marchante Fernández M; Ansorge U
    Neuropsychologia; 2016 Nov; 92():129-141. PubMed ID: 27059211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccadic context indicates information processing within visual fixations: evidence from event-related potentials and eye-movements analysis of the distractor effect.
    Graupner ST; Pannasch S; Velichkovsky BM
    Int J Psychophysiol; 2011 Apr; 80(1):54-62. PubMed ID: 21291920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The decoupled mind: mind-wandering disrupts cortical phase-locking to perceptual events.
    Baird B; Smallwood J; Lutz A; Schooler JW
    J Cogn Neurosci; 2014 Nov; 26(11):2596-607. PubMed ID: 24742189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disrupting saccadic updating: visual interference prior to the first saccade elicits spatial errors in the secondary saccade in a double-step task.
    Buonocore A; Melcher D
    Exp Brain Res; 2015 Jun; 233(6):1893-905. PubMed ID: 25832623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual temporal integration windows are adult-like in 5- to 7-year-old children.
    Freschl J; Melcher D; Kaldy Z; Blaser E
    J Vis; 2019 Jul; 19(7):5. PubMed ID: 31287859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations.
    Senkowski D; Talsma D; Grigutsch M; Herrmann CS; Woldorff MG
    Neuropsychologia; 2007 Feb; 45(3):561-71. PubMed ID: 16542688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory-visual temporal integration measured by shifts in perceived temporal location.
    Jaekl PM; Harris LR
    Neurosci Lett; 2007 May; 417(3):219-24. PubMed ID: 17428607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus.
    Paré M; Wurtz RH
    J Neurophysiol; 2001 Jun; 85(6):2545-62. PubMed ID: 11387400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength of figure-ground activity in monkey primary visual cortex predicts saccadic reaction time in a delayed detection task.
    Supèr H; Lamme VA
    Cereb Cortex; 2007 Jun; 17(6):1468-75. PubMed ID: 16920884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multisensory interaction in saccadic reaction time: a time-window-of-integration model.
    Colonius H; Diederich A
    J Cogn Neurosci; 2004; 16(6):1000-9. PubMed ID: 15298787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing age-related multisensory enhancement with the time-window-of-integration model.
    Diederich A; Colonius H; Schomburg A
    Neuropsychologia; 2008 Aug; 46(10):2556-62. PubMed ID: 18490033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.