These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27291164)

  • 1. Nuclear Proteomics Reveals the Role of Protein Synthesis and Chromatin Structure in Root Tip of Soybean during the Initial Stage of Flooding Stress.
    Yin X; Komatsu S
    J Proteome Res; 2016 Jul; 15(7):2283-98. PubMed ID: 27291164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress.
    Yin X; Komatsu S
    J Proteomics; 2015 Apr; 119():183-95. PubMed ID: 25724727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of nuclear proteins in soybean under flooding stress using proteomic technique.
    Oh MW; Nanjo Y; Komatsu S
    Protein Pept Lett; 2014 May; 21(5):458-67. PubMed ID: 24237379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress.
    Wang X; Li F; Chen Z; Yang B; Komatsu S; Zhou S
    J Proteomics; 2021 Feb; 232():104064. PubMed ID: 33276190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean.
    Yin X; Nishimura M; Hajika M; Komatsu S
    J Proteome Res; 2016 Jun; 15(6):2008-25. PubMed ID: 27132649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.
    Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P
    J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.
    Wang X; Oh M; Sakata K; Komatsu S
    J Proteomics; 2016 Jan; 130():42-55. PubMed ID: 26376099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques.
    Yin X; Sakata K; Nanjo Y; Komatsu S
    J Proteomics; 2014 Jun; 106():1-16. PubMed ID: 24732726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques.
    Komatsu S; Kuji R; Nanjo Y; Hiraga S; Furukawa K
    J Proteomics; 2012 Dec; 77():531-60. PubMed ID: 23041469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic and metabolomic analyses of soybean root tips under flooding stress.
    Komatsu S; Nakamura T; Sugimoto Y; Sakamoto K
    Protein Pept Lett; 2014; 21(9):865-84. PubMed ID: 24654851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress.
    Mustafa G; Sakata K; Komatsu S
    J Proteomics; 2016 Oct; 148():113-25. PubMed ID: 27469891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of proteins in soybean roots under flooding and drought stresses.
    Oh M; Komatsu S
    J Proteomics; 2015 Jan; 114():161-81. PubMed ID: 25464361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean.
    Wang X; Komatsu S
    J Proteomics; 2018 Feb; 172():201-215. PubMed ID: 29133124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.
    Khan MN; Sakata K; Hiraga S; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.
    Nanjo Y; Nakamura T; Komatsu S
    J Proteome Res; 2013 Nov; 12(11):4785-98. PubMed ID: 23659366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.
    Komatsu S; Nanjo Y; Nishimura M
    J Proteomics; 2013 Feb; 79():231-50. PubMed ID: 23313221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
    Wang X; Khodadadi E; Fakheri B; Komatsu S
    J Proteomics; 2017 Jun; 162():62-72. PubMed ID: 28435105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative proteomics analysis in roots of soybean to compatible symbiotic bacteria under flooding stress.
    Khatoon A; Rehman S; Salavati A; Komatsu S
    Amino Acids; 2012 Dec; 43(6):2513-25. PubMed ID: 22692703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.
    Khatoon A; Rehman S; Hiraga S; Makino T; Komatsu S
    J Proteomics; 2012 Oct; 75(18):5706-23. PubMed ID: 22850269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.