These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
558 related articles for article (PubMed ID: 27291461)
1. A Bioprinted Liver-on-a-Chip for Drug Screening Applications. Knowlton S; Tasoglu S Trends Biotechnol; 2016 Sep; 34(9):681-682. PubMed ID: 27291461 [TBL] [Abstract][Full Text] [Related]
2. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Chang R; Emami K; Wu H; Sun W Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286 [TBL] [Abstract][Full Text] [Related]
3. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lee H; Cho DW Lab Chip; 2016 Jul; 16(14):2618-25. PubMed ID: 27302471 [TBL] [Abstract][Full Text] [Related]
5. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids. Weltin A; Hammer S; Noor F; Kaminski Y; Kieninger J; Urban GA Biosens Bioelectron; 2017 Jan; 87():941-948. PubMed ID: 27665516 [TBL] [Abstract][Full Text] [Related]
6. Cellular hydrogel biopaper for patterned 3D cell culture and modular tissue reconstruction. Lee W; Bae CY; Kwon S; Son J; Kim J; Jeong Y; Yoo SS; Park JK Adv Healthc Mater; 2012 Sep; 1(5):635-9. PubMed ID: 23184799 [TBL] [Abstract][Full Text] [Related]
7. Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers. Yajima Y; Lee CN; Yamada M; Utoh R; Seki M J Biosci Bioeng; 2018 Jul; 126(1):111-118. PubMed ID: 29502942 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction of Hepatic Tissue Structures Using Interstitial Flow in a Microfluidic Device. Sudo R Methods Mol Biol; 2019; 1905():167-174. PubMed ID: 30536099 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo. Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499 [TBL] [Abstract][Full Text] [Related]
10. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing. Knowlton S; Yenilmez B; Tasoglu S Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152 [TBL] [Abstract][Full Text] [Related]
11. 3D Bioprinted Liver-on-a-Chip for Drug Cytotoxicity Screening. Huh J; Parra JPRLL; Copus JS; Kang HW; Bishop CE; Soker S; Murphy S; Shupe TD; Yoo JJ; Lee SJ; Atala A Tissue Eng Part A; 2024 Jul; 30(13-14):333-341. PubMed ID: 38126301 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Christoffersson J; Aronsson C; Jury M; Selegård R; Aili D; Mandenius CF Biofabrication; 2018 Dec; 11(1):015013. PubMed ID: 30523863 [TBL] [Abstract][Full Text] [Related]
13. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731 [TBL] [Abstract][Full Text] [Related]
14. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional cultured liver-on-a-Chip with mature hepatocyte-like cells derived from human pluripotent stem cells. Kamei KI; Yoshioka M; Terada S; Tokunaga Y; Chen Y Biomed Microdevices; 2019 Jul; 21(3):73. PubMed ID: 31304567 [TBL] [Abstract][Full Text] [Related]
16. An integrated biomimetic array chip for establishment of collagen-based 3D primary human hepatocyte model for prediction of clinical drug-induced liver injury. Xiao RR; Lv T; Tu X; Li P; Wang T; Dong H; Tu P; Ai X Biotechnol Bioeng; 2021 Dec; 118(12):4687-4698. PubMed ID: 34478150 [TBL] [Abstract][Full Text] [Related]
17. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening. Yang W; Yu H; Li G; Wei F; Wang Y; Liu L Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures. Cui J; Wang H; Zheng Z; Shi Q; Sun T; Huang Q; Fukuda T Biofabrication; 2018 Dec; 11(1):015016. PubMed ID: 30523847 [TBL] [Abstract][Full Text] [Related]
19. Printing Technologies for Medical Applications. Shafiee A; Atala A Trends Mol Med; 2016 Mar; 22(3):254-265. PubMed ID: 26856235 [TBL] [Abstract][Full Text] [Related]
20. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]