These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 27291989)

  • 1. Relationship between daily fluctuations of body temperature and the processing of sub-second intervals.
    Mioni G; Labonté K; Cellini N; Grondin S
    Physiol Behav; 2016 Oct; 164(Pt A):220-6. PubMed ID: 27291989
    [No Abstract]   [Full Text] [Related]  

  • 2. Circadian rhythms during cycling exercise and finger-tapping task.
    Moussay S; Dosseville F; Gauthier A; Larue J; Sesboüe B; Davenne D
    Chronobiol Int; 2002 Nov; 19(6):1137-49. PubMed ID: 12511031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human perception of short and long time intervals: its correlation with body temperature and the duration of wake time.
    Aschoff J
    J Biol Rhythms; 1998 Oct; 13(5):437-42. PubMed ID: 9783235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diurnal fluctuations in subjective sleep time in humans.
    Aritake-Okada S; Higuchi S; Suzuki H; Kuriyama K; Enomoto M; Soshi T; Kitamura S; Watanabe M; Hida A; Matsuura M; Uchiyama M; Mishima K
    Neurosci Res; 2010 Nov; 68(3):225-31. PubMed ID: 20674617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroconvulsive shock alters the rat overt rhythms of motor activity and temperature without altering the circadian pacemaker.
    Anglès-Pujolràs M; Díez-Noguera A; Soria V; Urretavizcaya M; Menchón JM; Cambras T
    Behav Brain Res; 2009 Jan; 196(1):37-43. PubMed ID: 18706453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time in motion: effects of whole-body rotatory accelerations on timekeeping processes.
    Binetti N; Siegler IA; Bueti D; Doricchi F
    Neuropsychologia; 2010 May; 48(6):1842-52. PubMed ID: 20227429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian rhythm of body temperature in an ectotherm (Iguana iguana).
    Tosini G; Menaker M
    J Biol Rhythms; 1995 Sep; 10(3):248-55. PubMed ID: 7488762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of dopamine signaling in the circadian modulation of interval timing.
    Bussi IL; Levín G; Golombek DA; Agostino PV
    Eur J Neurosci; 2014 Jul; 40(1):2299-310. PubMed ID: 24689904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex differences in finger tapping: a developmental study.
    Wolff PH; Hurwitz I
    Neuropsychologia; 1976; 14(1):35-41. PubMed ID: 1272511
    [No Abstract]   [Full Text] [Related]  

  • 10. Transcranial magnetic stimulation in a finger-tapping task separates motor from timing mechanisms and induces frequency doubling.
    Levit-Binnun N; Handzy NZ; Peled A; Modai I; Moses E
    J Cogn Neurosci; 2007 May; 19(5):721-33. PubMed ID: 17488200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The circadian body temperature rhythm of Djungarian Hamsters (Phodopus sungorus) revealing different circadian phenotypes.
    Schöttner K; Waterhouse J; Weinert D
    Physiol Behav; 2011 Jun; 103(3-4):352-8. PubMed ID: 21334353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-induced changes in circadian rhythms of body temperature and activity in rats are not caused by pacemaker changes.
    Meerlo P; van den Hoofdakker RH; Koolhaas JM; Daan S
    J Biol Rhythms; 1997 Feb; 12(1):80-92. PubMed ID: 9104692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature.
    Scheer FA; Pirovano C; Van Someren EJ; Buijs RM
    Neuroscience; 2005; 132(2):465-77. PubMed ID: 15802197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes.
    Schwartze M; Keller PE; Patel AD; Kotz SA
    Behav Brain Res; 2011 Jan; 216(2):685-91. PubMed ID: 20883725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feedback and autonomic awareness: the ability to discriminate the direction of spontaneous changes in peripheral body temperature.
    Lombardo C; Violani C
    Int J Psychophysiol; 1994 Jul; 17(2):145-51. PubMed ID: 7995776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term time estimation is influenced by circadian phase.
    Campbell SS; Murphy PJ; Boothroyd CE
    Physiol Behav; 2001 Mar; 72(4):589-93. PubMed ID: 11282144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time processing in children with Tourette's syndrome.
    Vicario CM; Martino D; Spata F; Defazio G; Giacchè R; Martino V; Rappo G; Pepi AM; Silvestri PR; Cardona F
    Brain Cogn; 2010 Jun; 73(1):28-34. PubMed ID: 20189281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Severe impairment of circadian rhythm in Alzheimer's disease.
    Volicer L; Harper DG; Stopa EG
    J Nutr Health Aging; 2012 Oct; 16(10):888-90. PubMed ID: 23208027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian oscillations of three parameters at defined light intensities and color.
    Winget CM; Card DH; Pope JM
    J Appl Physiol; 1968 Mar; 24(3):401-6. PubMed ID: 5640727
    [No Abstract]   [Full Text] [Related]  

  • 20. Time of day effects on a human force discrimination task.
    Miller LS; Lombardo TW; Fowler SC
    Physiol Behav; 1992 Nov; 52(5):839-41. PubMed ID: 1484837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.