These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27292023)

  • 21. The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer.
    Liao L; Testa JR; Yang H
    Cancer Genet; 2015 May; 208(5):206-14. PubMed ID: 25873528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma.
    Bihr S; Ohashi R; Moore AL; Rüschoff JH; Beisel C; Hermanns T; Mischo A; Corrò C; Beyer J; Beerenwinkel N; Moch H; Schraml P
    Neoplasia; 2019 Feb; 21(2):247-256. PubMed ID: 30660076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes.
    Xie Y; Sahin M; Sinha S; Wang Y; Nargund AM; Lyu Y; Han S; Dong Y; Hsieh JJ; Leslie CS; Cheng EH
    Nat Cancer; 2022 Feb; 3(2):188-202. PubMed ID: 35115713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A role for SETD2 loss in tumorigenesis through DNA methylation dysregulation.
    Javaid H; Barberis A; Chervova O; Nassiri I; Voloshin V; Sato Y; Ogawa S; Fairfax B; Buffa F; Humphrey TC
    BMC Cancer; 2023 Aug; 23(1):721. PubMed ID: 37528416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC.
    Ibragimova I; Maradeo ME; Dulaimi E; Cairns P
    Epigenetics; 2013 May; 8(5):486-93. PubMed ID: 23644518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MiR-138 induces renal carcinoma cell senescence by targeting EZH2 and is downregulated in human clear cell renal cell carcinoma.
    Liang J; Zhang Y; Jiang G; Liu Z; Xiang W; Chen X; Chen Z; Zhao J
    Oncol Res; 2013; 21(2):83-91. PubMed ID: 24406044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Benzene Hematotoxic and Reactive Metabolite 1,4-Benzoquinone Impairs the Activity of the Histone Methyltransferase SET Domain Containing 2 (SETD2) and Causes Aberrant Histone H3 Lysine 36 Trimethylation (H3K36me3).
    Berthelet J; Michail C; Bui LC; Le Coadou L; Sirri V; Wang L; Dulphy N; Dupret JM; Chomienne C; Guidez F; Rodrigues-Lima F
    Mol Pharmacol; 2021 Sep; 100(3):283-294. PubMed ID: 34266924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SETD2: an epigenetic modifier with tumor suppressor functionality.
    Li J; Duns G; Westers H; Sijmons R; van den Berg A; Kok K
    Oncotarget; 2016 Aug; 7(31):50719-50734. PubMed ID: 27191891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A missense SNP in the tumor suppressor SETD2 reduces H3K36me3 and mitotic spindle integrity in Drosophila.
    Brockett JS; Manalo T; Zein-Sabatto H; Lee J; Fang J; Chu P; Feng H; Patil D; Davidson P; Ogan K; Master VA; Pattaras JG; Roberts DL; Bergquist SH; Reyna MA; Petros JA; Lerit DA; Arnold RS
    Genetics; 2024 Apr; 226(4):. PubMed ID: 38290049
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies.
    Piva F; Santoni M; Matrana MR; Satti S; Giulietti M; Occhipinti G; Massari F; Cheng L; Lopez-Beltran A; Scarpelli M; Principato G; Cascinu S; Montironi R
    Expert Rev Mol Diagn; 2015; 15(9):1201-10. PubMed ID: 26166446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological characteristics of SETD2-mutated locally advanced clear cell renal cell carcinoma: Comparison with BAP1-mutated clear cell renal cell carcinoma.
    Takeda K; Bastacky S; Dhir R; Mohebnasab M; Quiroga-Garza GM
    Ann Diagn Pathol; 2024 Feb; 68():152223. PubMed ID: 37976977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects.
    Simon JM; Hacker KE; Singh D; Brannon AR; Parker JS; Weiser M; Ho TH; Kuan PF; Jonasch E; Furey TS; Prins JF; Lieb JD; Rathmell WK; Davis IJ
    Genome Res; 2014 Feb; 24(2):241-50. PubMed ID: 24158655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decreased Expression of SETD2 Predicts Unfavorable Prognosis in Patients With Nonmetastatic Clear-Cell Renal Cell Carcinoma.
    Liu W; Fu Q; An H; Chang Y; Zhang W; Zhu Y; Xu L; Xu J
    Medicine (Baltimore); 2015 Nov; 94(45):e2004. PubMed ID: 26559293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Phase II Trial of the WEE1 Inhibitor Adavosertib in SETD2-Altered Advanced Solid Tumor Malignancies (NCI 10170).
    Maldonado E; Rathmell WK; Shapiro GI; Takebe N; Rodon J; Mahalingam D; Trikalinos NA; Kalebasty AR; Parikh M; Boerner SA; Balido C; Krings G; Burns TF; Bergsland EK; Munster PN; Ashworth A; LoRusso P; Aggarwal RR
    Cancer Res Commun; 2024 Jul; 4(7):1793-1801. PubMed ID: 38920407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An actin-WHAMM interaction linking SETD2 and autophagy.
    Seervai RNH; Grimm SL; Jangid RK; Tripathi DN; Coarfa C; Walker CL
    Biochem Biophys Res Commun; 2021 Jun; 558():202-208. PubMed ID: 33036756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SETD2, an epigenetic tumor suppressor: a focused review on GI tumor.
    Hu M; Hu M; Zhang Q; Lai J; Liu X
    Front Biosci (Landmark Ed); 2020 Jan; 25(4):781-797. PubMed ID: 31585917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint.
    Carvalho S; Vítor AC; Sridhara SC; Martins FB; Raposo AC; Desterro JM; Ferreira J; de Almeida SF
    Elife; 2014 May; 3():e02482. PubMed ID: 24843002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma.
    Yu M; Qian K; Wang G; Xiao Y; Zhu Y; Ju L
    Front Oncol; 2023; 13():1114461. PubMed ID: 37025591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.
    Dalgliesh GL; Furge K; Greenman C; Chen L; Bignell G; Butler A; Davies H; Edkins S; Hardy C; Latimer C; Teague J; Andrews J; Barthorpe S; Beare D; Buck G; Campbell PJ; Forbes S; Jia M; Jones D; Knott H; Kok CY; Lau KW; Leroy C; Lin ML; McBride DJ; Maddison M; Maguire S; McLay K; Menzies A; Mironenko T; Mulderrig L; Mudie L; O'Meara S; Pleasance E; Rajasingham A; Shepherd R; Smith R; Stebbings L; Stephens P; Tang G; Tarpey PS; Turrell K; Dykema KJ; Khoo SK; Petillo D; Wondergem B; Anema J; Kahnoski RJ; Teh BT; Stratton MR; Futreal PA
    Nature; 2010 Jan; 463(7279):360-3. PubMed ID: 20054297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histone methyltransferase Setd2 is critical for the proliferation and differentiation of myoblasts.
    Yi X; Tao Y; Lin X; Dai Y; Yang T; Yue X; Jiang X; Li X; Jiang DS; Andrade KC; Chang J
    Biochim Biophys Acta Mol Cell Res; 2017 Apr; 1864(4):697-707. PubMed ID: 28130125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.