BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 27292055)

  • 1. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.
    Zhang J; Lanuza GM; Britz O; Wang Z; Siembab VC; Zhang Y; Velasquez T; Alvarez FJ; Frank E; Goulding M
    Neuron; 2014 Apr; 82(1):138-50. PubMed ID: 24698273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons(1,2,3).
    Rybak IA; Dougherty KJ; Shevtsova NA
    eNeuro; 2015 Sep; 2(5):. PubMed ID: 26478909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetically defined asymmetry underlies the inhibitory control of flexor-extensor locomotor movements.
    Britz O; Zhang J; Grossmann KS; Dyck J; Kim JC; Dymecki S; Gosgnach S; Goulding M
    Elife; 2015 Oct; 4():. PubMed ID: 26465208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control.
    Callahan RA; Roberts R; Sengupta M; Kimura Y; Higashijima SI; Bagnall MW
    Elife; 2019 Jul; 8():. PubMed ID: 31355747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of minimal neuronal networks involved in flexor-extensor alternation in the mammalian spinal cord.
    Talpalar AE; Endo T; Löw P; Borgius L; Hägglund M; Dougherty KJ; Ryge J; Hnasko TS; Kiehn O
    Neuron; 2011 Sep; 71(6):1071-84. PubMed ID: 21943604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal V3 Interneurons and Left-Right Coordination in Mammalian Locomotion.
    Danner SM; Zhang H; Shevtsova NA; Borowska-Fielding J; Deska-Gauthier D; Rybak IA; Zhang Y
    Front Cell Neurosci; 2019; 13():516. PubMed ID: 31824266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ipsilateral and Contralateral Interactions in Spinal Locomotor Circuits Mediated by V1 Neurons: Insights from Computational Modeling.
    Shevtsova NA; Li EZ; Singh S; Dougherty KJ; Rybak IA
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation.
    Rybak IA; Stecina K; Shevtsova NA; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):641-58. PubMed ID: 17008375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Haque F; Rancic V; Zhang W; Clugston R; Ballanyi K; Gosgnach S
    J Neurosci; 2018 Jun; 38(25):5666-5676. PubMed ID: 29789381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.
    Molkov YI; Bacak BJ; Talpalar AE; Rybak IA
    PLoS Comput Biol; 2015 May; 11(5):e1004270. PubMed ID: 25970489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. V1 interneurons regulate the pattern and frequency of locomotor-like activity in the neonatal mouse spinal cord.
    Falgairolle M; O'Donovan MJ
    PLoS Biol; 2019 Sep; 17(9):e3000447. PubMed ID: 31513565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of DSCAM in the development of the spinal locomotor and sensorimotor circuits.
    Thiry L; Lemieux M; D Laflamme O; Bretzner F
    J Neurophysiol; 2016 Mar; 115(3):1338-54. PubMed ID: 26655819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord.
    Pujala A; Blivis D; O'Donovan MJ
    eNeuro; 2016; 3(3):. PubMed ID: 27419215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.