These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27292295)

  • 1. Immunocytochemical organization and sour taste activation in the rostral nucleus of the solitary tract of mice.
    Stratford JM; Thompson JA; Finger TE
    J Comp Neurol; 2017 Feb; 525(2):271-290. PubMed ID: 27292295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 5-HT
    Stratford JM; Larson ED; Yang R; Salcedo E; Finger TE
    J Comp Neurol; 2017 Jul; 525(10):2358-2375. PubMed ID: 28316078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Deletion of TrpV1 and TrpA1 Does Not Alter Avoidance of or Patterns of Brainstem Activation to Citric Acid in Mice.
    Yu T; Wilson CE; Stratford JM; Finger TE
    Chem Senses; 2020 Oct; 45(7):573-579. PubMed ID: 32572463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurons with diverse phenotypes project from the caudal to the rostral nucleus of the solitary tract.
    Travers S; Breza J; Harley J; Zhu J; Travers J
    J Comp Neurol; 2018 Oct; 526(14):2319-2338. PubMed ID: 30325514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gustatory innervation in the rabbit: central distribution of sensory and motor components of the chorda tympani, glossopharyngeal, and superior laryngeal nerves.
    Hanamori T; Smith DV
    J Comp Neurol; 1989 Apr; 282(1):1-14. PubMed ID: 2708588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramedullary projections of the rostral nucleus of the solitary tract in the rat: gustatory influences on autonomic output.
    Streefland C; Jansen K
    Chem Senses; 1999 Dec; 24(6):655-64. PubMed ID: 10587498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medullary visceral reflex circuits: local afferents to nucleus tractus solitarii synthesize catecholamines and project to thoracic spinal cord.
    Mtui EP; Anwar M; Reis DJ; Ruggiero DA
    J Comp Neurol; 1995 Jan; 351(1):5-26. PubMed ID: 7534775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy of the gustatory system in the hamster: central projections of the chorda tympani and the lingual nerve.
    Whitehead MC; Frank ME
    J Comp Neurol; 1983 Nov; 220(4):378-95. PubMed ID: 6643734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary afferent projections from the upper respiratory tract in the muskrat.
    Panneton WM
    J Comp Neurol; 1991 Jun; 308(1):51-65. PubMed ID: 1714922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex.
    Geerling JC; Loewy AD
    J Comp Neurol; 2007 Oct; 504(4):379-403. PubMed ID: 17663450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters.
    Stratford JM; Thompson JA
    Chem Senses; 2016 Mar; 41(3):211-20. PubMed ID: 26762887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure.
    Ciriello J; Caverson MM; McMurray JC; Bruckschwaiger EB
    Neuroscience; 2013 Oct; 250():599-613. PubMed ID: 23912034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats.
    Oka A; Yamamoto M; Takeda R; Ohara H; Sato F; Akhter F; Haque T; Kato T; Sessle BJ; Takada K; Yoshida A
    Brain Res; 2013 Dec; 1540():48-63. PubMed ID: 24125811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taste-evoked Fos expression in nitrergic neurons in the nucleus of the solitary tract and reticular formation of the rat.
    Travers SP; Travers JB
    J Comp Neurol; 2007 Feb; 500(4):746-60. PubMed ID: 17154256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central representation of postingestive chemosensory cues in mice that lack the ability to taste.
    Stratford JM; Finger TE
    J Neurosci; 2011 Jun; 31(25):9101-10. PubMed ID: 21697361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.
    Sun C; Hummler E; Hill DL
    J Neurosci; 2017 Jan; 37(3):660-672. PubMed ID: 28100747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calbindin D28k-containing neurons in the paratrigeminal nucleus receive convergent nociceptive information and project to nucleus of the solitary tract in rat.
    Ma WL; Zhang WB; Feng G; Cai YL
    Brain Res; 2005 Mar; 1038(2):132-40. PubMed ID: 15757629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A survey of oral cavity afferents to the rat nucleus tractus solitarii.
    Corson J; Aldridge A; Wilmoth K; Erisir A
    J Comp Neurol; 2012 Feb; 520(3):495-527. PubMed ID: 21800298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Types of taste circuits synaptically linked to a few geniculate ganglion neurons.
    Zaidi FN; Todd K; Enquist L; Whitehead MC
    J Comp Neurol; 2008 Dec; 511(6):753-72. PubMed ID: 18925565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taste coding in the parabrachial nucleus of the pons in awake, freely licking rats and comparison with the nucleus of the solitary tract.
    Weiss MS; Victor JD; Di Lorenzo PM
    J Neurophysiol; 2014 Apr; 111(8):1655-70. PubMed ID: 24381029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.