BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27292455)

  • 1. Cortical and vestibular stimulation reveal preserved descending motor pathways in individuals with motor-complete spinal cord injury.
    Squair JW; Bjerkefors A; Inglis JT; Lam T; Carpenter MG
    J Rehabil Med; 2016 Jul; 48(7):589-96. PubMed ID: 27292455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of abdominal muscle function in individuals with motor-complete spinal cord injury above T6 in response to transcranial magnetic stimulation.
    Bjerkefors A; Squair JW; Chua R; Lam T; Chen Z; Carpenter MG
    J Rehabil Med; 2015 Feb; 47(2):138-46. PubMed ID: 25502735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary motor cortex inhibition in spinal cord injuries.
    Kriz J; Kozak J; Zedka M
    Neuro Endocrinol Lett; 2012; 33(4):431-41. PubMed ID: 22936262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmental recording of cortical motor evoked potentials from thoracic paravertebral myotomes in complete spinal cord injury.
    Cariga P; Catley M; Nowicky AV; Savic G; Ellaway PH; Davey NJ
    Spine (Phila Pa 1976); 2002 Jul; 27(13):1438-43. PubMed ID: 12131743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual Innervation of the Pelvic Floor Muscles in People with Motor-Complete Spinal Cord Injury.
    Williams AMM; Eginyan G; Deegan E; Chow M; Carpenter MG; Lam T
    J Neurotrauma; 2020 Nov; 37(21):2320-2331. PubMed ID: 32718211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective assessment of cervical spinal cord injury levels by transcranial magnetic motor-evoked potentials.
    Shields CB; Ping Zhang Y; Shields LB; Burke DA; Glassman SD
    Surg Neurol; 2006 Nov; 66(5):475-83; discussion 483. PubMed ID: 17084191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-interval intracortical inhibition with incomplete spinal cord injury.
    Roy FD; Zewdie ET; Gorassini MA
    Clin Neurophysiol; 2011 Jul; 122(7):1387-95. PubMed ID: 21295518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial magnetic stimulation (TMS) responses elicited in hindlimb muscles as an assessment of synaptic plasticity in spino-muscular circuitry after chronic spinal cord injury.
    Petrosyan HA; Alessi V; Sisto SA; Kaufman M; Arvanian VL
    Neurosci Lett; 2017 Mar; 642():37-42. PubMed ID: 28159637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of thenar muscles to transcranial magnetic stimulation of the motor cortex in patients with incomplete spinal cord injury.
    Davey NJ; Smith HC; Wells E; Maskill DW; Savic G; Ellaway PH; Frankel HL
    J Neurol Neurosurg Psychiatry; 1998 Jul; 65(1):80-7. PubMed ID: 9667566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central cord syndrome of cervical spinal cord injury: widespread changes in muscle recruitment studied by voluntary contractions and transcranial magnetic stimulation.
    Alexeeva N; Broton JG; Suys S; Calancie B
    Exp Neurol; 1997 Dec; 148(2):399-406. PubMed ID: 9417819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review.
    Nardone R; Höller Y; Brigo F; Orioli A; Tezzon F; Schwenker K; Christova M; Golaszewski S; Trinka E
    Brain Res; 2015 Sep; 1619():139-54. PubMed ID: 25251591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual descending motor pathways influence spasticity after spinal cord injury.
    Sangari S; Lundell H; Kirshblum S; Perez MA
    Ann Neurol; 2019 Jul; 86(1):28-41. PubMed ID: 31102289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel cortical target to enhance hand motor output in humans with spinal cord injury.
    Long J; Federico P; Perez MA
    Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG-triggered stimulation post spinal cord injury: A case report.
    Zoghi M; Galea MP
    Physiother Theory Pract; 2018 Apr; 34(4):309-315. PubMed ID: 29111852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of single-session repetitive transcranial magnetic stimulation applied over the hand versus leg motor area on pain after spinal cord injury.
    Jetté F; Côté I; Meziane HB; Mercier C
    Neurorehabil Neural Repair; 2013 Sep; 27(7):636-43. PubMed ID: 23579183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury.
    Sangari S; Kirshblum S; Guest JD; Oudega M; Perez MA
    J Physiol; 2021 Oct; 599(19):4441-4454. PubMed ID: 34107068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Term Paired Associative Stimulation Enhances Motor Output of the Tetraplegic Hand.
    Tolmacheva A; Savolainen S; Kirveskari E; Lioumis P; Kuusela L; Brandstack N; Ylinen A; Mäkelä JP; Shulga A
    J Neurotrauma; 2017 Sep; 34(18):2668-2674. PubMed ID: 28635523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of patients with cervical and upper thoracic incomplete spinal cord injury using repetitive transcranial magnetic stimulation.
    Leszczyńska K; Wincek A; Fortuna W; Huber J; Łukaszek J; Okurowski S; Chmielak K; Tabakow P
    Int J Artif Organs; 2020 May; 43(5):323-331. PubMed ID: 31714170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.