These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 27292653)
1. Study of sex differences in the association between hip fracture risk and body parameters by DXA-based biomechanical modeling. Nasiri M; Luo Y Bone; 2016 Sep; 90():90-8. PubMed ID: 27292653 [TBL] [Abstract][Full Text] [Related]
2. Hip fracture and anthropometric variations: dominance among trochanteric soft tissue thickness, body height and body weight during sideways fall. Majumder S; Roychowdhury A; Pal S Clin Biomech (Bristol); 2013; 28(9-10):1034-40. PubMed ID: 24139746 [TBL] [Abstract][Full Text] [Related]
3. A two-level subject-specific biomechanical model for improving prediction of hip fracture risk. Sarvi MN; Luo Y Clin Biomech (Bristol); 2015 Oct; 30(8):881-7. PubMed ID: 26126498 [TBL] [Abstract][Full Text] [Related]
4. Contribution of trochanteric soft tissues to fall force estimates, the factor of risk, and prediction of hip fracture risk. Bouxsein ML; Szulc P; Munoz F; Thrall E; Sornay-Rendu E; Delmas PD J Bone Miner Res; 2007 Jun; 22(6):825-31. PubMed ID: 17352651 [TBL] [Abstract][Full Text] [Related]
5. The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Dufour AB; Roberts B; Broe KE; Kiel DP; Bouxsein ML; Hannan MT Osteoporos Int; 2012 Feb; 23(2):513-20. PubMed ID: 21344243 [TBL] [Abstract][Full Text] [Related]
6. Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Szulc P; Duboeuf F; Schott AM; Dargent-Molina P; Meunier PJ; Delmas PD Osteoporos Int; 2006 Feb; 17(2):231-6. PubMed ID: 15983728 [TBL] [Abstract][Full Text] [Related]
7. Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study. Crabtree NJ; Kroger H; Martin A; Pols HA; Lorenc R; Nijs J; Stepan JJ; Falch JA; Miazgowski T; Grazio S; Raptou P; Adams J; Collings A; Khaw KT; Rushton N; Lunt M; Dixon AK; Reeve J Osteoporos Int; 2002 Jan; 13(1):48-54. PubMed ID: 11883408 [TBL] [Abstract][Full Text] [Related]
8. Associations of Body Mass Index With Incident Fractures and Hip Structural Parameters in a Large Canadian Cohort. Shen J; Leslie WD; Nielson CM; Majumdar SR; Morin SN; Orwoll ES J Clin Endocrinol Metab; 2016 Feb; 101(2):476-84. PubMed ID: 26670128 [TBL] [Abstract][Full Text] [Related]
9. Trochanteric bone mineral density is associated with type of hip fracture in the elderly. Greenspan SL; Myers ER; Maitland LA; Kido TH; Krasnow MB; Hayes WC J Bone Miner Res; 1994 Dec; 9(12):1889-94. PubMed ID: 7872054 [TBL] [Abstract][Full Text] [Related]
10. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. Duan Y; Beck TJ; Wang XF; Seeman E J Bone Miner Res; 2003 Oct; 18(10):1766-74. PubMed ID: 14584886 [TBL] [Abstract][Full Text] [Related]
11. Predictive value of BMD for hip and other fractures. Johnell O; Kanis JA; Oden A; Johansson H; De Laet C; Delmas P; Eisman JA; Fujiwara S; Kroger H; Mellstrom D; Meunier PJ; Melton LJ; O'Neill T; Pols H; Reeve J; Silman A; Tenenhouse A J Bone Miner Res; 2005 Jul; 20(7):1185-94. PubMed ID: 15940371 [TBL] [Abstract][Full Text] [Related]
12. Improving the prediction of sideways fall-induced impact force for women by developing a female-specific equation. Sarvi MN; Luo Y J Biomech; 2019 May; 88():64-71. PubMed ID: 30902414 [TBL] [Abstract][Full Text] [Related]
13. Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall. Wang Q; Teo JW; Ghasem-Zadeh A; Seeman E Osteoporos Int; 2009 Jul; 20(7):1151-6. PubMed ID: 18931818 [TBL] [Abstract][Full Text] [Related]
14. How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Schott AM; Cormier C; Hans D; Favier F; Hausherr E; Dargent-Molina P; Delmas PD; Ribot C; Sebert JL; Breart G; Meunier PJ Osteoporos Int; 1998; 8(3):247-54. PubMed ID: 9797909 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT). Pottecher P; Engelke K; Duchemin L; Museyko O; Moser T; Mitton D; Vicaut E; Adams J; Skalli W; Laredo JD; Bousson V Radiology; 2016 Sep; 280(3):837-47. PubMed ID: 27077380 [TBL] [Abstract][Full Text] [Related]
16. Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Pulkkinen P; Partanen J; Jalovaara P; Jämsä T Osteoporos Int; 2004 Apr; 15(4):274-80. PubMed ID: 14760516 [TBL] [Abstract][Full Text] [Related]
17. Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. Yang L; Peel N; Clowes JA; McCloskey EV; Eastell R J Bone Miner Res; 2009 Jan; 24(1):33-42. PubMed ID: 18767924 [TBL] [Abstract][Full Text] [Related]
18. Comparison of hip fracture risk prediction by femoral aBMD to experimentally measured factor of risk. Roberts BJ; Thrall E; Muller JA; Bouxsein ML Bone; 2010 Mar; 46(3):742-6. PubMed ID: 19854307 [TBL] [Abstract][Full Text] [Related]
19. Correlation of femoral and lumbar DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in vitro failure loads of the proximal femur. Lochmüller EM; Zeller JB; Kaiser D; Eckstein F; Landgraf J; Putz R; Steldinger R Osteoporos Int; 1998; 8(6):591-8. PubMed ID: 10326066 [TBL] [Abstract][Full Text] [Related]
20. Development of a nomogram for individualizing hip fracture risk in men and women. Nguyen ND; Frost SA; Center JR; Eisman JA; Nguyen TV Osteoporos Int; 2007 Aug; 18(8):1109-17. PubMed ID: 17370100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]