These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 27292874)
1. RF-Hydroxysite: a random forest based predictor for hydroxylation sites. Ismail HD; Newman RH; Kc DB Mol Biosyst; 2016 Jul; 12(8):2427-35. PubMed ID: 27292874 [TBL] [Abstract][Full Text] [Related]
2. PredHydroxy: computational prediction of protein hydroxylation site locations based on the primary structure. Shi SP; Chen X; Xu HD; Qiu JD Mol Biosyst; 2015 Mar; 11(3):819-25. PubMed ID: 25534958 [TBL] [Abstract][Full Text] [Related]
3. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids. Jia CZ; He WY; Yao YH J Biomol Struct Dyn; 2017 Mar; 35(4):829-835. PubMed ID: 26957000 [TBL] [Abstract][Full Text] [Related]
4. SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties. Hasan MM; Yang S; Zhou Y; Mollah MN Mol Biosyst; 2016 Mar; 12(3):786-95. PubMed ID: 26739209 [TBL] [Abstract][Full Text] [Related]
5. RF-GlutarySite: a random forest based predictor for glutarylation sites. Al-Barakati HJ; Saigo H; Newman RH; Kc DB Mol Omics; 2019 Jun; 15(3):189-204. PubMed ID: 31025681 [TBL] [Abstract][Full Text] [Related]
6. HydPred: a novel method for the identification of protein hydroxylation sites that reveals new insights into human inherited disease. Li S; Lu J; Li J; Chen X; Yao X; Xi L Mol Biosyst; 2016 Feb; 12(2):490-8. PubMed ID: 26661679 [TBL] [Abstract][Full Text] [Related]
7. Prediction and analysis of protein hydroxyproline and hydroxylysine. Hu LL; Niu S; Huang T; Wang K; Shi XH; Cai YD PLoS One; 2010 Dec; 5(12):e15917. PubMed ID: 21209839 [TBL] [Abstract][Full Text] [Related]
8. A systematic identification of species-specific protein succinylation sites using joint element features information. Hasan MM; Khatun MS; Mollah MNH; Yong C; Guo D Int J Nanomedicine; 2017; 12():6303-6315. PubMed ID: 28894368 [TBL] [Abstract][Full Text] [Related]
9. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information. Ma X; Guo J; Liu HD; Xie JM; Sun X IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1766-75. PubMed ID: 22868682 [TBL] [Abstract][Full Text] [Related]
10. Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction. López Y; Sharma A; Dehzangi A; Lal SP; Taherzadeh G; Sattar A; Tsunoda T BMC Genomics; 2018 Jan; 19(Suppl 1):923. PubMed ID: 29363424 [TBL] [Abstract][Full Text] [Related]
11. RF-Phos: A Novel General Phosphorylation Site Prediction Tool Based on Random Forest. Ismail HD; Jones A; Kim JH; Newman RH; Kc DB Biomed Res Int; 2016; 2016():3281590. PubMed ID: 27066500 [TBL] [Abstract][Full Text] [Related]
12. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Qiu WR; Sun BQ; Xiao X; Xu ZC; Chou KC Oncotarget; 2016 Jul; 7(28):44310-44321. PubMed ID: 27322424 [TBL] [Abstract][Full Text] [Related]
13. Prolyl hydroxylation in elastin is not random. Schmelzer CE; Nagel MB; Dziomba S; Merkher Y; Sivan SS; Heinz A Biochim Biophys Acta; 2016 Oct; 1860(10):2169-77. PubMed ID: 27180175 [TBL] [Abstract][Full Text] [Related]
14. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids. Ali S; Majid A; Khan A Amino Acids; 2014 Apr; 46(4):977-93. PubMed ID: 24390396 [TBL] [Abstract][Full Text] [Related]
15. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature. Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114 [TBL] [Abstract][Full Text] [Related]
16. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features. Xu Y; Yang Y; Ding J; Li C IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125 [TBL] [Abstract][Full Text] [Related]
17. Molecular-orbital study of hydroxylation of collagenous proline and lysine. Zahradník R; Hobza P; Hurych J Biochim Biophys Acta; 1971 Dec; 251(3):314-9. PubMed ID: 11452871 [TBL] [Abstract][Full Text] [Related]
18. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP Mol Biosyst; 2012 Apr; 8(5):1520-7. PubMed ID: 22402705 [TBL] [Abstract][Full Text] [Related]
19. Prediction of methylation sites using the composition of K-spaced amino acid pairs. Zhang W; Xu X; Yin M; Luo N; Zhang J; Wang J Protein Pept Lett; 2013 Aug; 20(8):911-7. PubMed ID: 23276225 [TBL] [Abstract][Full Text] [Related]
20. Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Wu J; Liu H; Duan X; Ding Y; Wu H; Bai Y; Sun X Bioinformatics; 2009 Jan; 25(1):30-5. PubMed ID: 19008251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]