BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27293099)

  • 1. Na+-Translocating Rhodopsin from Dokdonia sp. PRO95 Does Not Contain Carotenoid Antenna.
    Bertsova YV; Arutyunyan AM; Bogachev AV
    Biochemistry (Mosc); 2016 Apr; 81(4):414-9. PubMed ID: 27293099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a carotenoid-binding site in Dokdonia sp. PRO95 Na
    Anashkin VA; Bertsova YV; Mamedov AM; Mamedov MD; Arutyunyan AM; Baykov AA; Bogachev AV
    Photosynth Res; 2018 May; 136(2):161-169. PubMed ID: 28983723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna.
    Imasheva ES; Balashov SP; Choi AR; Jung KH; Lanyi JK
    Biochemistry; 2009 Nov; 48(46):10948-55. PubMed ID: 19842712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the key determinant of the transport promiscuity in Na
    Mamedov AM; Bertsova YV; Anashkin VA; Mamedov MD; Baykov AA; Bogachev AV
    Biochem Biophys Res Commun; 2018 May; 499(3):600-604. PubMed ID: 29601812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin.
    Balashov SP; Imasheva ES; Lanyi JK
    Biochemistry; 2006 Sep; 45(36):10998-1004. PubMed ID: 16953586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time kinetics of electrogenic Na(+) transport by rhodopsin from the marine flavobacterium Dokdonia sp. PRO95.
    Bogachev AV; Bertsova YV; Verkhovskaya ML; Mamedov MD; Skulachev VP
    Sci Rep; 2016 Feb; 6():21397. PubMed ID: 26864904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A single mutation converts bacterial Na(+) -transporting rhodopsin into an H(+) transporter.
    Mamedov MD; Mamedov AM; Bertsova YV; Bogachev AV
    FEBS Lett; 2016 Sep; 590(17):2827-35. PubMed ID: 27447358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group.
    Balashov SP; Imasheva ES; Choi AR; Jung KH; Liaaen-Jensen S; Lanyi JK
    Biochemistry; 2010 Nov; 49(45):9792-9. PubMed ID: 20942439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteorhodopsin from Dokdonia sp. PRO95 is a light-driven Na+-pump.
    Bertsova YV; Bogachev AV; Skulachev VP
    Biochemistry (Mosc); 2015 Apr; 80(4):449-54. PubMed ID: 25869362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex.
    Iyer ES; Gdor I; Eliash T; Sheves M; Ruhman S
    J Phys Chem B; 2015 Feb; 119(6):2345-9. PubMed ID: 25144664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna.
    Balashov SP; Imasheva ES; Boichenko VA; Antón J; Wang JM; Lanyi JK
    Science; 2005 Sep; 309(5743):2061-4. PubMed ID: 16179480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal β-ionone ring-salinixanthin interactions in xanthorhodopsin: a study using artificial pigments.
    Smolensky Koganov E; Hirshfeld A; Sheves M
    Biochemistry; 2013 Feb; 52(7):1290-301. PubMed ID: 23331279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein.
    Riedel T; Gómez-Consarnau L; Tomasch J; Martin M; Jarek M; González JM; Spring S; Rohlfs M; Brinkhoff T; Cypionka H; Göker M; Fiebig A; Klein J; Goesmann A; Fuhrman JA; Wagner-Döbler I
    PLoS One; 2013; 8(3):e57487. PubMed ID: 23526944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin.
    Polívka T; Balashov SP; Chábera P; Imasheva ES; Yartsev A; Sundström V; Lanyi JK
    Biophys J; 2009 Mar; 96(6):2268-77. PubMed ID: 19289053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal and reconstitution of the carotenoid antenna of xanthorhodopsin.
    Imasheva ES; Balashov SP; Wang JM; Lanyi JK
    J Membr Biol; 2011 Jan; 239(1-2):95-104. PubMed ID: 21104180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chirality origin of retinal-carotenoid complex in gloeobacter rhodopsin: a temperature-dependent excitonic coupling.
    Jana S; Jung KH; Sheves M
    Sci Rep; 2020 Aug; 10(1):13992. PubMed ID: 32814821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal-Salinixanthin Interactions in a Thermophilic Rhodopsin.
    Misra R; Eliash T; Sudo Y; Sheves M
    J Phys Chem B; 2019 Jan; 123(1):10-20. PubMed ID: 30525616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal-salinixanthin interactions in xanthorhodopsin: [corrected] a circular dichroism (CD) spectroscopy study with artificial pigments.
    Smolensky E; Sheves M
    Biochemistry; 2009 Sep; 48(34):8179-88. PubMed ID: 19637932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability.
    Ghosh M; Misra R; Bhattacharya S; Majhi K; Jung KH; Sheves M
    J Phys Chem B; 2023 Mar; 127(10):2128-2137. PubMed ID: 36857147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin.
    Balashov SP; Imasheva ES; Wang JM; Lanyi JK
    Biophys J; 2008 Sep; 95(5):2402-14. PubMed ID: 18515390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.