These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27293388)

  • 1. Silk Biomaterials with Vascularization Capacity.
    Han H; Ning H; Liu S; Lu Q; Fan Z; Lu H; Lu G; Kaplan DL
    Adv Funct Mater; 2016 Jan; 26(3):421-436. PubMed ID: 27293388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic Silk Scaffolds with an Amorphous Structure for Soft Tissue Engineering.
    Sang Y; Li M; Liu J; Yao Y; Ding Z; Wang L; Xiao L; Lu Q; Fu X; Kaplan DL
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9290-9300. PubMed ID: 29485270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microchannels Are an Architectural Cue That Promotes Integration and Vascularization of Silk Biomaterials in Vivo.
    Tang F; Manz XD; Bongers A; Odell RA; Joukhdar H; Whitelock JM; Lord MS; Rnjak-Kovacina J
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1476-1486. PubMed ID: 33455399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-insoluble amorphous silk fibroin scaffolds from aqueous solutions.
    Fan Z; Xiao L; Lu G; Ding Z; Lu Q
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):798-808. PubMed ID: 31207049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk scaffolds with tunable mechanical capability for cell differentiation.
    Bai S; Han H; Huang X; Xu W; Kaplan DL; Zhu H; Lu Q
    Acta Biomater; 2015 Jul; 20():22-31. PubMed ID: 25858557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile incorporation of REDV into porous silk fibroin scaffolds for enhancing vascularization of thick tissues.
    Yao D; Qian Z; Zhou J; Peng G; Zhou G; Liu H; Fan Y
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():96-105. PubMed ID: 30274134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of silk fibroin fiber incorporation on mechanical properties, endothelial cell colonization and vascularization of PDLLA scaffolds.
    Stoppato M; Stevens HY; Carletti E; Migliaresi C; Motta A; Guldberg RE
    Biomaterials; 2013 Jun; 34(19):4573-81. PubMed ID: 23522374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model.
    Steiner D; Lang G; Fischer L; Winkler S; Fey T; Greil P; Scheibel T; Horch RE; Arkudas A
    Tissue Eng Part A; 2019 Nov; 25(21-22):1504-1513. PubMed ID: 30848159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering.
    Stoppel WL; Hu D; Domian IJ; Kaplan DL; Black LD
    Biomed Mater; 2015 Mar; 10(3):034105. PubMed ID: 25826196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk Nanofiber Scaffolds with Multiple Angiogenic Cues to Accelerate Wound Regeneration.
    Xu G; Xiao L; Guo P; Wang Y; Ke S; Lyu G; Ding X; Lu Q; Kaplan DL
    ACS Biomater Sci Eng; 2023 Oct; 9(10):5813-5823. PubMed ID: 37710361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrayed Hollow Channels in Silk-based Scaffolds Provide Functional Outcomes for Engineering Critically-sized Tissue Constructs.
    Rnjak-Kovacina J; Wray LS; Golinski JM; Kaplan DL
    Adv Funct Mater; 2014 Apr; 24(15):2188-2196. PubMed ID: 25395920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration.
    Zhang W; Wray LS; Rnjak-Kovacina J; Xu L; Zou D; Wang S; Zhang M; Dong J; Li G; Kaplan DL; Jiang X
    Biomaterials; 2015 Jul; 56():68-77. PubMed ID: 25934280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Silk Fiber-Based Scaffold for Regeneration of the Anterior Cruciate Ligament: Histological Results From a Study in Sheep.
    Teuschl A; Heimel P; Nürnberger S; van Griensven M; Redl H; Nau T
    Am J Sports Med; 2016 Jun; 44(6):1547-57. PubMed ID: 26957219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced vascularization and
    Steiner D; Winkler S; Heltmann-Meyer S; Trossmann VT; Fey T; Scheibel T; Horch RE; Arkudas A
    Biofabrication; 2021 Jul; 13(4):. PubMed ID: 34157687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable Silk Nanofiber Hydrogels for Sustained Release of Small-Molecule Drugs and Vascularization.
    Ding Z; Zhou M; Zhou Z; Zhang W; Jiang X; Lu X; Zuo B; Lu Q; Kaplan DL
    ACS Biomater Sci Eng; 2019 Aug; 5(8):4077-4088. PubMed ID: 33448809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation.
    Wray LS; Tsioris K; Gi ES; Omenetto FG; Kaplan DL
    Adv Funct Mater; 2013 Jul; 23(27):3404-3412. PubMed ID: 24058328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic tissue engineered ligament with silk collagen scaffold for ACL regeneration: A preliminary study.
    Ran J; Hu Y; Le H; Chen Y; Zheng Z; Chen X; Yin Z; Yan R; Jin Z; Tang C; Huang J; Gu Y; Xu L; Qian S; Zhang W; Heng BC; Dominique P; Chen W; Wu L; Shen W; Ouyang H
    Acta Biomater; 2017 Apr; 53():307-317. PubMed ID: 28213096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
    Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL
    Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.