These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27293480)

  • 1. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue.
    Horstmeyer R; Ruan H; Yang C
    Nat Photonics; 2015; 9():563-571. PubMed ID: 27293480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping.
    Ruan H; Haber T; Liu Y; Brake J; Kim J; Berlin JM; Yang C
    Optica; 2017 Nov; 4(11):1337-1343. PubMed ID: 29623290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NeuWS: Neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media.
    Feng BY; Guo H; Xie M; Boominathan V; Sharma MK; Veeraraghavan A; Metzler CA
    Sci Adv; 2023 Jun; 9(26):eadg4671. PubMed ID: 37379386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum reference beacon-guided superresolution optical focusing in complex media.
    Kim D; Englund DR
    Science; 2019 Feb; 363(6426):528-531. PubMed ID: 30705192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidestar-free image-guided wavefront shaping.
    Yeminy T; Katz O
    Sci Adv; 2021 May; 7(21):. PubMed ID: 34138733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing.
    Hu L; Hu S; Li Y; Gong W; Si K
    J Biophotonics; 2020 Jan; 13(1):e201900245. PubMed ID: 31622537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focusing light into scattering media with ultrasound-induced field perturbation.
    Cheng Z; Wang LV
    Light Sci Appl; 2021 Aug; 10(1):159. PubMed ID: 34341328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light.
    Ruan H; Brake J; Robinson JE; Liu Y; Jang M; Xiao C; Zhou C; Gradinaru V; Yang C
    Sci Adv; 2017 Dec; 3(12):eaao5520. PubMed ID: 29226248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media.
    Yu Z; Huangfu J; Zhao F; Xia M; Wu X; Niu X; Li D; Lai P; Wang D
    Sci Rep; 2018 Feb; 8(1):2927. PubMed ID: 29440682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping.
    Hemphill AS; Shen Y; Liu Y; Wang LV
    Appl Phys Lett; 2017 Nov; 111(22):221109. PubMed ID: 29249832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavefront shaping: A versatile tool to conquer multiple scattering in multidisciplinary fields.
    Yu Z; Li H; Zhong T; Park JH; Cheng S; Woo CM; Zhao Q; Yao J; Zhou Y; Huang X; Pang W; Yoon H; Shen Y; Liu H; Zheng Y; Park Y; Wang LV; Lai P
    Innovation (Camb); 2022 Sep; 3(5):100292. PubMed ID: 36032195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media.
    Hemphill AS; Tay JW; Wang LV
    J Biomed Opt; 2016 Dec; 21(12):121502. PubMed ID: 27626770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media.
    Zhao T; Ourselin S; Vercauteren T; Xia W
    Opt Lett; 2021 Mar; 46(5):1165-1168. PubMed ID: 33649683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media.
    Lai P; Wang L; Tay JW; Wang LV
    Nat Photonics; 2015 Feb; 9(2):126-132. PubMed ID: 25914725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in optical imaging through deep tissue: imaging probes and techniques.
    Yoon S; Cheon SY; Park S; Lee D; Lee Y; Han S; Kim M; Koo H
    Biomater Res; 2022 Oct; 26(1):57. PubMed ID: 36273205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping.
    Qiao Y; Peng Y; Zheng Y; Ye F; Chen X
    Opt Lett; 2017 May; 42(10):1895-1898. PubMed ID: 28504753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonically encoded wavefront shaping for focusing into random media.
    Tay JW; Lai P; Suzuki Y; Wang LV
    Sci Rep; 2014 Jan; 4():3918. PubMed ID: 24472822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation.
    Ma C; Zhou F; Liu Y; Wang LV
    Optica; 2015 Oct; 2(10):869-876. PubMed ID: 30221184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavefront Shaping Concepts for Application in Optical Coherence Tomography-A Review.
    Kanngiesser J; Roth B
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33316998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Invasive Imaging Through Scattering Medium by Using a Reverse Response Wavefront Shaping Technique.
    Sanjeev A; Kapellner Y; Shabairou N; Gur E; Sinvani M; Zalevsky Z
    Sci Rep; 2019 Aug; 9(1):12275. PubMed ID: 31439914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.