These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27293662)

  • 61. The Integrative Physiology of Insect Chill Tolerance.
    Overgaard J; MacMillan HA
    Annu Rev Physiol; 2017 Feb; 79():187-208. PubMed ID: 27860831
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity.
    Žagar A; Holmstrup M; Simčič T; Debeljak B; Slotsbo S
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Oct; 224():35-41. PubMed ID: 29885552
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Can greenhouses eliminate the development of cold resistance of the leafminers?
    Chen B; Kang L
    Oecologia; 2005 Jun; 144(2):187-95. PubMed ID: 15800738
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Chill-tolerant Gryllus crickets maintain ion balance at low temperatures.
    Coello Alvarado LE; MacMillan HA; Sinclair BJ
    J Insect Physiol; 2015 Jun; 77():15-25. PubMed ID: 25846013
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanisms underlying insect chill-coma.
    Macmillan HA; Sinclair BJ
    J Insect Physiol; 2011 Jan; 57(1):12-20. PubMed ID: 20969872
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of the molecular components of a Tigriopus californicus (Crustacea, Copepoda) circadian clock.
    Nesbit KT; Christie AE
    Comp Biochem Physiol Part D Genomics Proteomics; 2014 Dec; 12():16-44. PubMed ID: 25310881
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii.
    Ragland GJ; Kingsolver JG
    Evolution; 2008 Jun; 62(6):1345-57. PubMed ID: 18331458
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Latitudinal variation of freeze tolerance in intertidal marine snails of the genus Melampus (Gastropoda: Ellobiidae).
    Dennis AB; Loomis SH; Hellberg ME
    Physiol Biochem Zool; 2014; 87(4):517-26. PubMed ID: 24940916
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Increased abundance of frost mRNA during recovery from cold stress is not essential for cold tolerance in adult Drosophila melanogaster.
    Udaka H; Percival-Smith A; Sinclair BJ
    Insect Mol Biol; 2013 Oct; 22(5):541-50. PubMed ID: 23901849
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.
    Gehan MA; Park S; Gilmour SJ; An C; Lee CM; Thomashow MF
    Plant J; 2015 Nov; 84(4):682-93. PubMed ID: 26369909
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Transcriptome Analysis Reveals Candidate Genes for Cold Tolerance in Drosophila ananassae.
    Königer A; Grath S
    Genes (Basel); 2018 Dec; 9(12):. PubMed ID: 30545157
    [TBL] [Abstract][Full Text] [Related]  

  • 72. C4 bioenergy crops for cool climates, with special emphasis on perennial C4 grasses.
    Sage RF; de Melo Peixoto M; Friesen P; Deen B
    J Exp Bot; 2015 Jul; 66(14):4195-212. PubMed ID: 25873658
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Environmental and genetic control of cold tolerance in the Glanville fritillary butterfly.
    de Jong MA; Saastamoinen M
    J Evol Biol; 2018 May; 31(5):636-645. PubMed ID: 29424462
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A transcriptomics assessment of oxygen-temperature interactions reveals novel candidate genes underlying variation in thermal tolerance and survival.
    Boardman L; Mitchell KA; Terblanche JS; Sørensen JG
    J Insect Physiol; 2018 Apr; 106(Pt 3):179-188. PubMed ID: 29038013
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Three Quantitative Trait Loci Explain More than 60% of Variation for Chill Coma Recovery Time in a Natural Population of
    Königer A; Arif S; Grath S
    G3 (Bethesda); 2019 Nov; 9(11):3715-3725. PubMed ID: 31690597
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An impressive capacity for cold tolerance plasticity protects against ionoregulatory collapse in the disease vector
    Jass A; Yerushalmi GY; Davis HE; Donini A; MacMillan HA
    J Exp Biol; 2019 Dec; 222(Pt 24):. PubMed ID: 31732503
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepod Tigriopus californicus.
    Barreto FS; Schoville SD; Burton RS
    Mol Ecol Resour; 2015 Jul; 15(4):868-79. PubMed ID: 25487181
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics.
    Raisuddin S; Kwok KW; Leung KM; Schlenk D; Lee JS
    Aquat Toxicol; 2007 Jul; 83(3):161-73. PubMed ID: 17560667
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rapid cold hardening and octopamine modulate chill tolerance in Locusta migratoria.
    Srithiphaphirom P; Lavallee S; Robertson RM
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():28-35. PubMed ID: 30991118
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species.
    Tremblay P; MacMillan HA; Kharouba HM
    Ecol Evol; 2021 Jun; 11(12):8332-8346. PubMed ID: 34188890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.