These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 27293907)

  • 1. Glutamate Receptors in Alzheimer's Disease: Mechanisms and Therapies.
    Anggono V; Tsai LH; Götz J
    Neural Plast; 2016; 2016():8256196. PubMed ID: 27293907
    [No Abstract]   [Full Text] [Related]  

  • 2. First effects of rising amyloid-β in transgenic mouse brain: synaptic transmission and gene expression.
    Cummings DM; Liu W; Portelius E; Bayram S; Yasvoina M; Ho SH; Smits H; Ali SS; Steinberg R; Pegasiou CM; James OT; Matarin M; Richardson JC; Zetterberg H; Blennow K; Hardy JA; Salih DA; Edwards FA
    Brain; 2015 Jul; 138(Pt 7):1992-2004. PubMed ID: 25981962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of glutamate and GABAA receptors in the hippocampus of patients with Alzheimer's disease.
    Armstrong DM; Sheffield R; Mishizen-Eberz AJ; Carter TL; Rissman RA; Mizukami K; Ikonomovic MD
    Cell Mol Neurobiol; 2003 Oct; 23(4-5):491-505. PubMed ID: 14514010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone marrow-derived mesenchymal stem cells contribute to the reduction of amyloid-β deposits and the improvement of synaptic transmission in a mouse model of pre-dementia Alzheimer's disease.
    Bae JS; Jin HK; Lee JK; Richardson JC; Carter JE
    Curr Alzheimer Res; 2013 Jun; 10(5):524-31. PubMed ID: 23036020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid Beta-Related Alterations to Glutamate Signaling Dynamics During Alzheimer's Disease Progression.
    Findley CA; Bartke A; Hascup KN; Hascup ER
    ASN Neuro; 2019; 11():1759091419855541. PubMed ID: 31213067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer's disease.
    Paula-Lima AC; Brito-Moreira J; Ferreira ST
    J Neurochem; 2013 Jul; 126(2):191-202. PubMed ID: 23668663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic dysfunction in Alzheimer's disease.
    Marcello E; Epis R; Saraceno C; Di Luca M
    Adv Exp Med Biol; 2012; 970():573-601. PubMed ID: 22351073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alzheimer's disease drug discovery: Abeta and beyond.
    Shineman DW; Fillit HM
    Curr Alzheimer Res; 2010 May; 7(3):188-9. PubMed ID: 20406195
    [No Abstract]   [Full Text] [Related]  

  • 9. Accumulation of murine amyloid-β mimics early Alzheimer's disease.
    Krohn M; Bracke A; Avchalumov Y; Schumacher T; Hofrichter J; Paarmann K; Fröhlich C; Lange C; Brüning T; von Bohlen Und Halbach O; Pahnke J
    Brain; 2015 Aug; 138(Pt 8):2370-82. PubMed ID: 25991605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-synaptic scaffolding protein interactions with glutamate receptors in synaptic dysfunction and Alzheimer's disease.
    Proctor DT; Coulson EJ; Dodd PR
    Prog Neurobiol; 2011 Apr; 93(4):509-21. PubMed ID: 21382433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of synaptic activity in the regulation of amyloid beta levels in Alzheimer's disease.
    Cheng X; Wu J; Geng M; Xiong J
    Neurobiol Aging; 2014 Jun; 35(6):1217-32. PubMed ID: 24368087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [beta-Amyloid, cholinergic neurons and Alzheimer's disease].
    Kasparová J; Dolezal V
    Cesk Fysiol; 2002 May; 51(2):82-94. PubMed ID: 12053492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The remarkable properties of amyloid-β derived from human Alzheimer's disease brain: swinging the streetlight.
    Brody DL; Gross ML
    Brain; 2014 Nov; 137(Pt 11):2874-5. PubMed ID: 25344080
    [No Abstract]   [Full Text] [Related]  

  • 14. Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer's Disease Model.
    Shen Y; Tian M; Zheng Y; Gong F; Fu AKY; Ip NY
    Cell Rep; 2016 Nov; 17(7):1819-1831. PubMed ID: 27829153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal pathology in relation to molecular biology and treatment of Alzheimer's disease.
    Francis PT; Bowen DM
    Mol Cell Biol Hum Dis Ser; 1994; 4():25-54. PubMed ID: 9439743
    [No Abstract]   [Full Text] [Related]  

  • 16. Phenylbutyric acid reduces amyloid plaques and rescues cognitive behavior in AD transgenic mice.
    Wiley JC; Pettan-Brewer C; Ladiges WC
    Aging Cell; 2011 Jun; 10(3):418-28. PubMed ID: 21272191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases.
    Simões-Pires EN; Ferreira ST; Linden R
    J Neurochem; 2021 Feb; 156(4):539-552. PubMed ID: 32683713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal synaptic activity, pattern separation and episodic-like memory: implications for mouse models of Alzheimer's disease pathology.
    Palmer A; Good M
    Biochem Soc Trans; 2011 Aug; 39(4):902-9. PubMed ID: 21787321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of β-amyloid peptide in hippocampal neurons.
    Sáez-Orellana F; Godoy PA; Bastidas CY; Silva-Grecchi T; Guzmán L; Aguayo LG; Fuentealba J
    Neuropharmacology; 2016 Jan; 100():116-23. PubMed ID: 25896766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamatergic neurotransmission in Alzheimer's disease.
    Cowburn RF; Hardy JA; Roberts PJ
    Biochem Soc Trans; 1990 Jun; 18(3):390-2. PubMed ID: 2164981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.