BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27294321)

  • 1. A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast.
    Collard F; Baldin F; Gerin I; Bolsée J; Noël G; Graff J; Veiga-da-Cunha M; Stroobant V; Vertommen D; Houddane A; Rider MH; Linster CL; Van Schaftingen E; Bommer GT
    Nat Chem Biol; 2016 Aug; 12(8):601-7. PubMed ID: 27294321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Guardian Angel Phosphatase for Mainline Carbon Metabolism.
    Beaudoin GA; Hanson AD
    Trends Biochem Sci; 2016 Nov; 41(11):893-894. PubMed ID: 27544441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoglycolate phosphatase is a metabolic proofreading enzyme essential for cellular function in
    Kempaiah Nagappa L; Satha P; Govindaraju T; Balaram H
    J Biol Chem; 2019 Mar; 294(13):4997-5007. PubMed ID: 30700551
    [No Abstract]   [Full Text] [Related]  

  • 4. The Metabolite Repair Enzyme Phosphoglycolate Phosphatase Regulates Central Carbon Metabolism and Fosmidomycin Sensitivity in Plasmodium falciparum.
    Dumont L; Richardson MB; van der Peet P; Marapana DS; Triglia T; Dixon MWA; Cowman AF; Williams SJ; Tilley L; McConville MJ; Cobbold SA
    mBio; 2019 Dec; 10(6):. PubMed ID: 31822583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS
    Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoglycolate has profound metabolic effects but most likely no role in a metabolic DNA response in cancer cell lines.
    Gerin I; Bury M; Baldin F; Graff J; Van Schaftingen E; Bommer GT
    Biochem J; 2019 Feb; 476(4):629-643. PubMed ID: 30670572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bacterial checkpoint protein for ribosome assembly moonlights as an essential metabolite-proofreading enzyme.
    Sachla AJ; Helmann JD
    Nat Commun; 2019 Apr; 10(1):1526. PubMed ID: 30948730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae.
    Kim S; Bae SJ; Hahn JS
    Sci Rep; 2016 Apr; 6():24145. PubMed ID: 27052099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Riboneogenesis in yeast.
    Clasquin MF; Melamud E; Singer A; Gooding JR; Xu X; Dong A; Cui H; Campagna SR; Savchenko A; Yakunin AF; Rabinowitz JD; Caudy AA
    Cell; 2011 Jun; 145(6):969-80. PubMed ID: 21663798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases.
    Possik E; Madiraju SRM; Prentki M
    Biochimie; 2017 Dec; 143():18-28. PubMed ID: 28826615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity.
    Tuleva B; Vasileva-Tonkova E; Galabova D
    FEMS Microbiol Lett; 1998 Apr; 161(1):139-44. PubMed ID: 9561742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast protein glycation in vivo by methylglyoxal. Molecular modification of glycolytic enzymes and heat shock proteins.
    Gomes RA; Vicente Miranda H; Silva MS; Graça G; Coelho AV; Ferreira AE; Cordeiro C; Freire AP
    FEBS J; 2006 Dec; 273(23):5273-87. PubMed ID: 17064314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems-level analysis of mechanisms regulating yeast metabolic flux.
    Hackett SR; Zanotelli VR; Xu W; Goya J; Park JO; Perlman DH; Gibney PA; Botstein D; Storey JD; Rabinowitz JD
    Science; 2016 Oct; 354(6311):. PubMed ID: 27789812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and Functional Characterization of a Yeast Sugar Alcohol Phosphatase.
    Xu YF; Lu W; Chen JC; Johnson SA; Gibney PA; Thomas DG; Brown G; May AL; Campagna SR; Yakunin AF; Botstein D; Rabinowitz JD
    ACS Chem Biol; 2018 Oct; 13(10):3011-3020. PubMed ID: 30240188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The association of glycolytic enzymes from yeast confers resistance against inhibition by trehalose.
    Araiza-Olivera D; Sampedro JG; Mújica A; Peña A; Uribe-Carvajal S
    FEMS Yeast Res; 2010 May; 10(3):282-9. PubMed ID: 20148975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycogen metabolism and glycolytic enzymes.
    Villar-Palasi C; Larner J
    Annu Rev Biochem; 1970; 39():639-72. PubMed ID: 4320262
    [No Abstract]   [Full Text] [Related]  

  • 17. On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.
    Linck A; Vu XK; Essl C; Hiesl C; Boles E; Oreb M
    FEMS Yeast Res; 2014 May; 14(3):389-98. PubMed ID: 24456572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical role of human bisphosphoglycerate mutase Cys22 in the phosphatase activator-binding site.
    Ravel P; Craescu CT; Arous N; Rosa J; Garel MC
    J Biol Chem; 1997 May; 272(22):14045-50. PubMed ID: 9162026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J; Wagner R
    J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: Identification of novel targets.
    Marimuthu S; Chivukula RS; Alfonso LF; Moridani M; Hagen FK; Bhat GJ
    Int J Oncol; 2011 Nov; 39(5):1273-83. PubMed ID: 21743961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.