These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 27294415)
1. Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants. Wang J; Chung SH; Peiffer M; Rosa C; Hoover K; Zeng R; Felton GW J Chem Ecol; 2016 Jun; 42(6):463-74. PubMed ID: 27294415 [TBL] [Abstract][Full Text] [Related]
2. Herbivore exploits orally secreted bacteria to suppress plant defenses. Chung SH; Rosa C; Scully ED; Peiffer M; Tooker JF; Hoover K; Luthe DS; Felton GW Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15728-33. PubMed ID: 24019469 [TBL] [Abstract][Full Text] [Related]
3. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Chung SH; Scully ED; Peiffer M; Geib SM; Rosa C; Hoover K; Felton GW Sci Rep; 2017 Jan; 7():39690. PubMed ID: 28045052 [TBL] [Abstract][Full Text] [Related]
4. Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. Bosch M; Berger S; Schaller A; Stintzi A BMC Plant Biol; 2014 Sep; 14():257. PubMed ID: 25261073 [TBL] [Abstract][Full Text] [Related]
5. Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s). Wang J; Peiffer M; Hoover K; Rosa C; Zeng R; Felton GW New Phytol; 2017 May; 214(3):1294-1306. PubMed ID: 28170113 [TBL] [Abstract][Full Text] [Related]
6. Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. Song YY; Ye M; Li CY; Wang RL; Wei XC; Luo SM; Zeng RS J Chem Ecol; 2013 Jul; 39(7):1036-44. PubMed ID: 23797931 [TBL] [Abstract][Full Text] [Related]
7. Colorado potato beetle exploits frass-associated bacteria to suppress defense responses in potato plants. Gao Z; Ju X; Yang M; Xue R; Li Q; Fu K; Guo W; Tong L; Song Y; Zeng R; Wang J Pest Manag Sci; 2022 Sep; 78(9):3778-3787. PubMed ID: 35102699 [TBL] [Abstract][Full Text] [Related]
8. Experimental insect suppression causes loss of induced, but not constitutive, resistance in Solanum carolinense. Coverdale TC; Agrawal AA Ecology; 2022 Nov; 103(11):e3786. PubMed ID: 35711089 [TBL] [Abstract][Full Text] [Related]
9. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. Alba JM; Schimmel BC; Glas JJ; Ataide LM; Pappas ML; Villarroel CA; Schuurink RC; Sabelis MW; Kant MR New Phytol; 2015 Jan; 205(2):828-40. PubMed ID: 25297722 [TBL] [Abstract][Full Text] [Related]
10. Helicoverpa zea-Associated Gut Bacteria as Drivers in Shaping Plant Anti-herbivore Defense in Tomato. Pan Q; Shikano I; Liu TX; Felton GW Microb Ecol; 2023 Oct; 86(3):2173-2182. PubMed ID: 37154919 [TBL] [Abstract][Full Text] [Related]
11. Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores. Runyon JB; Mescher MC; De Moraes CM Plant Physiol; 2008 Mar; 146(3):987-95. PubMed ID: 18165323 [TBL] [Abstract][Full Text] [Related]
12. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Jogaiah S; Abdelrahman M; Tran LP; Ito SI Mol Plant Pathol; 2018 Apr; 19(4):870-882. PubMed ID: 28605157 [TBL] [Abstract][Full Text] [Related]
13. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. Glas JJ; Alba JM; Simoni S; Villarroel CA; Stoops M; Schimmel BC; Schuurink RC; Sabelis MW; Kant MR BMC Biol; 2014 Nov; 12():98. PubMed ID: 25403155 [TBL] [Abstract][Full Text] [Related]
14. Specificity of induced resistance in tomato against specialist lepidopteran and coleopteran species. Chung SH; Felton GW J Chem Ecol; 2011 Apr; 37(4):378-86. PubMed ID: 21455676 [TBL] [Abstract][Full Text] [Related]
15. The Jasmonic Acid Pathway Positively Regulates the Polyphenol Oxidase-Based Defense against Tea Geometrid Caterpillars in the Tea Plant (Camellia sinensis). Zhang J; Zhang X; Ye M; Li XW; Lin SB; Sun XL J Chem Ecol; 2020 Mar; 46(3):308-316. PubMed ID: 32016775 [TBL] [Abstract][Full Text] [Related]
16. Trichoderma harzianum Strain T22 Modulates Direct Defense of Tomato Plants in Response to Nezara viridula Feeding Activity. Alınç T; Cusumano A; Peri E; Torta L; Colazza S J Chem Ecol; 2021 May; 47(4-5):455-462. PubMed ID: 33713251 [TBL] [Abstract][Full Text] [Related]
17. Herbivore-Induced Defenses in Tomato Plants Enhance the Lethality of the Entomopathogenic Bacterium, Bacillus thuringiensis var. kurstaki. Shikano I; Pan Q; Hoover K; Felton GW J Chem Ecol; 2018 Oct; 44(10):947-956. PubMed ID: 29980959 [TBL] [Abstract][Full Text] [Related]
18. Variation in both host defense and prior herbivory can alter plant-vector-virus interactions. Shi X; Preisser EL; Liu B; Pan H; Xiang M; Xie W; Wang S; Wu Q; Li C; Liu Y; Zhou X; Zhang Y BMC Plant Biol; 2019 Dec; 19(1):556. PubMed ID: 31842757 [TBL] [Abstract][Full Text] [Related]
19. Colorado potato beetle manipulates plant defenses in local and systemic leaves. Chung SH; Rosa C; Hoover K; Luthe DS; Felton GW Plant Signal Behav; 2013; 8(12):e27592. PubMed ID: 24390091 [TBL] [Abstract][Full Text] [Related]
20. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Uppalapati SR; Ishiga Y; Wangdi T; Kunkel BN; Anand A; Mysore KS; Bender CL Mol Plant Microbe Interact; 2007 Aug; 20(8):955-65. PubMed ID: 17722699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]