These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27294484)

  • 21. Improved flexible refinement of protein docking in CAPRI rounds 22-27.
    Shen Y
    Proteins; 2013 Dec; 81(12):2129-36. PubMed ID: 23996302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DOCKGROUND system of databases for protein recognition studies: unbound structures for docking.
    Gao Y; Douguet D; Tovchigrechko A; Vakser IA
    Proteins; 2007 Dec; 69(4):845-51. PubMed ID: 17803215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand Docking to Intermediate and Close-To-Bound Conformers Generated by an Elastic Network Model Based Algorithm for Highly Flexible Proteins.
    Kurkcuoglu Z; Doruker P
    PLoS One; 2016; 11(6):e0158063. PubMed ID: 27348230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scoring optimisation of unbound protein-protein docking including protein binding site predictions.
    Schneider S; Zacharias M
    J Mol Recognit; 2012 Jan; 25(1):15-23. PubMed ID: 22213447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A method for biomolecular structural recognition and docking allowing conformational flexibility.
    Sandak B; Nussinov R; Wolfson HJ
    J Comput Biol; 1998; 5(4):631-54. PubMed ID: 10072081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Docking and scoring protein complexes: CAPRI 3rd Edition.
    Lensink MF; Méndez R; Wodak SJ
    Proteins; 2007 Dec; 69(4):704-18. PubMed ID: 17918726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling the binding mode of macrocycles: Docking and conformational sampling.
    Martin SJ; Chen IJ; Chan AWE; Foloppe N
    Bioorg Med Chem; 2020 Jan; 28(1):115143. PubMed ID: 31771798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of protein flexibility on protein-protein docking.
    Ehrlich LP; Nilges M; Wade RC
    Proteins; 2005 Jan; 58(1):126-33. PubMed ID: 15515181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding.
    Foloppe N; Chen IJ
    Bioorg Med Chem; 2016 May; 24(10):2159-89. PubMed ID: 27061672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search.
    Hou T; Wang J; Chen L; Xu X
    Protein Eng; 1999 Aug; 12(8):639-48. PubMed ID: 10469824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complementarity of structure ensembles in protein-protein binding.
    Grünberg R; Leckner J; Nilges M
    Structure; 2004 Dec; 12(12):2125-36. PubMed ID: 15576027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validated Conformational Ensembles Are Key for the Successful Prediction of Protein Complexes.
    Pons C; Fenwick RB; Esteban-Martín S; Salvatella X; Fernandez-Recio J
    J Chem Theory Comput; 2013 Mar; 9(3):1830-7. PubMed ID: 26587639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimal ensembles of side chain conformers for modeling protein-protein interactions.
    Beglov D; Hall DR; Brenke R; Shapovalov MV; Dunbrack RL; Kozakov D; Vajda S
    Proteins; 2012 Feb; 80(2):591-601. PubMed ID: 22105850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A protein-RNA docking benchmark (II): extended set from experimental and homology modeling data.
    Pérez-Cano L; Jiménez-García B; Fernández-Recio J
    Proteins; 2012 Jul; 80(7):1872-82. PubMed ID: 22488990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The reorganization energy of compounds upon binding to proteins, from dynamic and solvated bound and unbound states.
    Foloppe N; Chen IJ
    Bioorg Med Chem; 2021 Dec; 51():116464. PubMed ID: 34798378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accounting for induced-fit effects in docking: what is possible and what is not?
    Sotriffer CA
    Curr Top Med Chem; 2011; 11(2):179-91. PubMed ID: 20939789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. cNMA: a framework of encounter complex-based normal mode analysis to model conformational changes in protein interactions.
    Oliwa T; Shen Y
    Bioinformatics; 2015 Jun; 31(12):i151-60. PubMed ID: 26072477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking.
    Ben-Shimon A; Niv MY
    Structure; 2015 May; 23(5):929-940. PubMed ID: 25914054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical sampling for metastable conformers determines biomolecular recognition: the case of malectin and diglucosylated N-glycan interactions.
    Mamidi AS; Surolia A
    J Biomol Struct Dyn; 2015; 33(6):1363-84. PubMed ID: 25139750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Refinement of Highly Flexible Protein Structures using Simulation-Guided Spectroscopy.
    Hays JM; Kieber MK; Li JZ; Han JI; Columbus L; Kasson PM
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):17110-17114. PubMed ID: 30395378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.