BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 27294598)

  • 21. FRET monitoring of a nonribosomal peptide synthetase.
    Alfermann J; Sun X; Mayerthaler F; Morrell TE; Dehling E; Volkmann G; Komatsuzaki T; Yang H; Mootz HD
    Nat Chem Biol; 2017 Sep; 13(9):1009-1015. PubMed ID: 28759017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis.
    Bloudoff K; Fage CD; Marahiel MA; Schmeing TM
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):95-100. PubMed ID: 27994138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines.
    Walsh CT; Chen H; Keating TA; Hubbard BK; Losey HC; Luo L; Marshall CG; Miller DA; Patel HM
    Curr Opin Chem Biol; 2001 Oct; 5(5):525-34. PubMed ID: 11578925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis.
    Haslinger K; Peschke M; Brieke C; Maximowitsch E; Cryle MJ
    Nature; 2015 May; 521(7550):105-9. PubMed ID: 25686610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases.
    Drake EJ; Miller BR; Shi C; Tarrasch JT; Sundlov JA; Allen CL; Skiniotis G; Aldrich CC; Gulick AM
    Nature; 2016 Jan; 529(7585):235-8. PubMed ID: 26762461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase.
    Kreitler DF; Gemmell EM; Schaffer JE; Wencewicz TA; Gulick AM
    Nat Commun; 2019 Jul; 10(1):3432. PubMed ID: 31366889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.
    Miller BR; Drake EJ; Shi C; Aldrich CC; Gulick AM
    J Biol Chem; 2016 Oct; 291(43):22559-22571. PubMed ID: 27597544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains.
    Challis GL; Ravel J; Townsend CA
    Chem Biol; 2000 Mar; 7(3):211-24. PubMed ID: 10712928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts.
    Goodrich AC; Harden BJ; Frueh DP
    J Am Chem Soc; 2015 Sep; 137(37):12100-9. PubMed ID: 26334259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular modeling of the reductase domain to elucidate the reaction mechanism of reduction of peptidyl thioester into its corresponding alcohol in non-ribosomal peptide synthetases.
    Manavalan B; Murugapiran SK; Lee G; Choi S
    BMC Struct Biol; 2010 Jan; 10():1. PubMed ID: 20067617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissecting and exploiting nonribosomal peptide synthetases.
    Shen QT; Chen XL; Sun CY; Zhang YZ
    Acta Biochim Biophys Sin (Shanghai); 2004 Apr; 36(4):243-9. PubMed ID: 15253149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis.
    Stein DB; Linne U; Hahn M; Marahiel MA
    Chembiochem; 2006 Nov; 7(11):1807-14. PubMed ID: 16952189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Piecing together nonribosomal peptide synthesis.
    Reimer JM; Haque AS; Tarry MJ; Schmeing TM
    Curr Opin Struct Biol; 2018 Apr; 49():104-113. PubMed ID: 29444491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains.
    Keating TA; Marshall CG; Walsh CT; Keating AE
    Nat Struct Biol; 2002 Jul; 9(7):522-6. PubMed ID: 12055621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Desymmetrization of Cyclodepsipeptides by Assembly Mode Switching of Iterative Nonribosomal Peptide Synthetases.
    Steiniger C; Hoffmann S; Süssmuth RD
    ACS Synth Biol; 2019 Apr; 8(4):661-667. PubMed ID: 30862156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis.
    Kittilä T; Mollo A; Charkoudian LK; Cryle MJ
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9834-40. PubMed ID: 27435901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural elements of an NRPS cyclization domain and its intermodule docking domain.
    Dowling DP; Kung Y; Croft AK; Taghizadeh K; Kelly WL; Walsh CT; Drennan CL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12432-12437. PubMed ID: 27791103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases.
    Ehmann DE; Trauger JW; Stachelhaus T; Walsh CT
    Chem Biol; 2000 Oct; 7(10):765-72. PubMed ID: 11033080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication.
    Goodrich AC; Meyers DJ; Frueh DP
    J Biol Chem; 2017 Jun; 292(24):10002-10013. PubMed ID: 28455448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical evidence for conformational changes in the cross-talk between adenylation and peptidyl-carrier protein domains of nonribosomal peptide synthetases.
    Zettler J; Mootz HD
    FEBS J; 2010 Mar; 277(5):1159-71. PubMed ID: 20121951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.