BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27294617)

  • 1. Recent demography drives changes in linked selection across the maize genome.
    Beissinger TM; Wang L; Crosby K; Durvasula A; Hufford MB; Ross-Ibarra J
    Nat Plants; 2016 Jun; 2():16084. PubMed ID: 27294617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interplay of demography and selection during maize domestication and expansion.
    Wang L; Beissinger TM; Lorant A; Ross-Ibarra C; Ross-Ibarra J; Hufford MB
    Genome Biol; 2017 Nov; 18(1):215. PubMed ID: 29132403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication.
    Ramos-Madrigal J; Smith BD; Moreno-Mayar JV; Gopalakrishnan S; Ross-Ibarra J; Gilbert MTP; Wales N
    Curr Biol; 2016 Dec; 26(23):3195-3201. PubMed ID: 27866890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential role of genetic assimilation during maize domestication.
    Lorant A; Pedersen S; Holst I; Hufford MB; Winter K; Piperno D; Ross-Ibarra J
    PLoS One; 2017; 12(9):e0184202. PubMed ID: 28886108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of selection at the ramosa1 locus during maize domestication.
    Sigmon B; Vollbrecht E
    Mol Ecol; 2010 Apr; 19(7):1296-311. PubMed ID: 20196812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic screening for artificial selection during domestication and improvement in maize.
    Yamasaki M; Wright SI; McMullen MD
    Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Largely unlinked gene sets targeted by selection for domestication syndrome phenotypes in maize and sorghum.
    Lai X; Yan L; Lu Y; Schnable JC
    Plant J; 2018 Mar; 93(5):843-855. PubMed ID: 29265526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection versus demography: a multilocus investigation of the domestication process in maize.
    Tenaillon MI; U'Ren J; Tenaillon O; Gaut BS
    Mol Biol Evol; 2004 Jul; 21(7):1214-25. PubMed ID: 15014173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic, evolutionary and plant breeding insights from the domestication of maize.
    Hake S; Ross-Ibarra J
    Elife; 2015 Mar; 4():. PubMed ID: 25807085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of artificial selection on the maize genome.
    Wright SI; Bi IV; Schroeder SG; Yamasaki M; Doebley JF; McMullen MD; Gaut BS
    Science; 2005 May; 308(5726):1310-4. PubMed ID: 15919994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genetic architecture of teosinte catalyzed and constrained maize domestication.
    Yang CJ; Samayoa LF; Bradbury PJ; Olukolu BA; Xue W; York AM; Tuholski MR; Wang W; Daskalska LL; Neumeyer MA; Sanchez-Gonzalez JJ; Romay MC; Glaubitz JC; Sun Q; Buckler ES; Holland JB; Doebley JF
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5643-5652. PubMed ID: 30842282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus.
    Clark RM; Tavaré S; Doebley J
    Mol Biol Evol; 2005 Nov; 22(11):2304-12. PubMed ID: 16079248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved genetic architecture among populations of the maize progenitor, teosinte, was radically altered by domestication.
    Chen Q; Samayoa LF; Yang CJ; Olukolu BA; York AM; Sanchez-Gonzalez JJ; Xue W; Glaubitz JC; Bradbury PJ; Romay MC; Sun Q; Buckler ES; Holland JB; Doebley JF
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34686607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation.
    Xu G; Zhang X; Chen W; Zhang R; Li Z; Wen W; Warburton ML; Li J; Li H; Yang X
    BMC Plant Biol; 2022 Feb; 22(1):72. PubMed ID: 35180846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative population genomics of maize domestication and improvement.
    Hufford MB; Xu X; van Heerwaarden J; Pyhäjärvi T; Chia JM; Cartwright RA; Elshire RJ; Glaubitz JC; Guill KE; Kaeppler SM; Lai J; Morrell PL; Shannon LM; Song C; Springer NM; Swanson-Wagner RA; Tiffin P; Wang J; Zhang G; Doebley J; McMullen MD; Ware D; Buckler ES; Yang S; Ross-Ibarra J
    Nat Genet; 2012 Jun; 44(7):808-11. PubMed ID: 22660546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cis regulatory evolution in maize domestication.
    Lemmon ZH; Bukowski R; Sun Q; Doebley JF
    PLoS Genet; 2014 Nov; 10(11):e1004745. PubMed ID: 25375861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The limits of selection during maize domestication.
    Wang RL; Stec A; Hey J; Lukens L; Doebley J
    Nature; 1999 Mar; 398(6724):236-9. PubMed ID: 10094045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement.
    Xu G; Lyu J; Li Q; Liu H; Wang D; Zhang M; Springer NM; Ross-Ibarra J; Yang J
    Nat Commun; 2020 Nov; 11(1):5539. PubMed ID: 33139747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication.
    Huang J; Gao Y; Jia H; Zhang Z
    Mol Ecol Resour; 2016 Nov; 16(6):1465-1477. PubMed ID: 26990495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A weak effect of background selection on trinucleotide microsatellites in maize.
    Thuillet AC; Tenaillon MI; Anderson LK; Mitchell SE; Kresovich S; Stack SM; Gaut B; Doebley J
    J Hered; 2008; 99(1):45-55. PubMed ID: 17962226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.