These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Low-Magnetic-Field Regime of a Gate-Defined Constriction in High-Mobility Graphene. Veyrat L; Jordan A; Zimmermann K; Gay F; Watanabe K; Taniguchi T; Sellier H; Sacépé B Nano Lett; 2019 Feb; 19(2):635-642. PubMed ID: 30654611 [TBL] [Abstract][Full Text] [Related]
7. Fabry-Pérot resonances and a crossover to the quantum Hall regime in ballistic graphene quantum point contacts. Ahmad NF; Komatsu K; Iwasaki T; Watanabe K; Taniguchi T; Mizuta H; Wakayama Y; Hashim AM; Morita Y; Moriyama S; Nakaharai S Sci Rep; 2019 Feb; 9(1):3031. PubMed ID: 30816251 [TBL] [Abstract][Full Text] [Related]
8. Active Fano resonance switch using dual-layer graphene in an embedded dielectric metasurface. Seo D; Lee JK; Park GC Opt Express; 2022 Jun; 30(12):22247-22259. PubMed ID: 36224927 [TBL] [Abstract][Full Text] [Related]
9. Fabry-Pérot Resonances in a Graphene/hBN Moiré Superlattice. Handschin C; Makk P; Rickhaus P; Liu MH; Watanabe K; Taniguchi T; Richter K; Schönenberger C Nano Lett; 2017 Jan; 17(1):328-333. PubMed ID: 27960257 [TBL] [Abstract][Full Text] [Related]
10. Fabry-Pérot interference in gapped bilayer graphene with broken anti-Klein tunneling. Varlet A; Liu MH; Krueckl V; Bischoff D; Simonet P; Watanabe K; Taniguchi T; Richter K; Ensslin K; Ihn T Phys Rev Lett; 2014 Sep; 113(11):116601. PubMed ID: 25259993 [TBL] [Abstract][Full Text] [Related]
11. Observation of Electron Coherence and Fabry-Perot Standing Waves at a Graphene Edge. Allen MT; Shtanko O; Fulga IC; Wang JI; Nurgaliev D; Watanabe K; Taniguchi T; Akhmerov AR; Jarillo-Herrero P; Levitov LS; Yacoby A Nano Lett; 2017 Dec; 17(12):7380-7386. PubMed ID: 29045153 [TBL] [Abstract][Full Text] [Related]
12. Quantum nanoconstrictions fabricated by cryo-etching in encapsulated graphene. Clericò V; Delgado-Notario JA; Saiz-Bretín M; Malyshev AV; Meziani YM; Hidalgo P; Méndez B; Amado M; Domínguez-Adame F; Diez E Sci Rep; 2019 Sep; 9(1):13572. PubMed ID: 31537889 [TBL] [Abstract][Full Text] [Related]
13. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics. Yasir KA; Liu WM Sci Rep; 2016 Mar; 6():22651. PubMed ID: 26955789 [TBL] [Abstract][Full Text] [Related]
14. Conductance enlargement in picoscale electroburnt graphene nanojunctions. Sadeghi H; Mol JA; Lau CS; Briggs GA; Warner J; Lambert CJ Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2658-63. PubMed ID: 25730863 [TBL] [Abstract][Full Text] [Related]
15. Independently tunable Fano resonances in a metal-insulator-metal coupled cavities system. Chen Y; Chen L; Wen K; Hu Y; Lin W Appl Opt; 2020 Feb; 59(5):1484-1490. PubMed ID: 32225407 [TBL] [Abstract][Full Text] [Related]
16. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Li S; Wang Y; Jiao R; Wang L; Duan G; Yu L Opt Express; 2017 Feb; 25(4):3525-3533. PubMed ID: 28241566 [TBL] [Abstract][Full Text] [Related]
17. In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. Lu Y; Merchant CA; Drndić M; Johnson AT Nano Lett; 2011 Dec; 11(12):5184-8. PubMed ID: 22026483 [TBL] [Abstract][Full Text] [Related]
18. Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictions. Noori M; Sadeghi H; Lambert CJ Nanoscale; 2018 Oct; 10(40):19220-19223. PubMed ID: 30303219 [TBL] [Abstract][Full Text] [Related]
19. Ballistic interferences in suspended graphene. Rickhaus P; Maurand R; Liu MH; Weiss M; Richter K; Schönenberger C Nat Commun; 2013; 4():2342. PubMed ID: 23946010 [TBL] [Abstract][Full Text] [Related]
20. A parabolic model to control quantum interference in T-shaped molecular junctions. Nozaki D; Sevinçli H; Avdoshenko SM; Gutierrez R; Cuniberti G Phys Chem Chem Phys; 2013 Sep; 15(33):13951-8. PubMed ID: 23558406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]