BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27295250)

  • 1. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.
    Rasoulnia P; Mousavi SM
    Bioresour Technol; 2016 Sep; 216():729-36. PubMed ID: 27295250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods.
    Rasoulnia P; Mousavi SM; Rastegar SO; Azargoshasb H
    Waste Manag; 2016 Jun; 52():309-17. PubMed ID: 27095291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.
    Bahaloo-Horeh N; Mousavi SM
    Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process.
    Vakilchap F; Mousavi SM; Shojaosadati SA
    Bioresour Technol; 2016 Oct; 218():991-8. PubMed ID: 27450129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics.
    Faraji F; Golmohammadzadeh R; Rashchi F; Alimardani N
    J Environ Manage; 2018 Jul; 217():775-787. PubMed ID: 29660703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger.
    Aung KM; Ting YP
    J Biotechnol; 2005 Mar; 116(2):159-70. PubMed ID: 15664080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of metal Bioleaching from thermal power plant fly ash by Aspergillus niger 34770 culture supernatant and reduction of phytotoxicity during the process.
    Jadhav UU; Hocheng H
    Appl Biochem Biotechnol; 2015 Jan; 175(2):870-81. PubMed ID: 25349087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous recovery of vanadium and nickel from power plant fly-ash: optimization of parameters using response surface methodology.
    Nazari E; Rashchi F; Saba M; Mirazimi SM
    Waste Manag; 2014 Dec; 34(12):2687-96. PubMed ID: 25269818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of platinum recovery from a spent refinery catalyst with a hybrid of oxalic acid produced by Aspergillus niger and mineral acids.
    Malekian H; Salehi M; Biria D
    Waste Manag; 2019 Feb; 85():264-271. PubMed ID: 30803580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of fly ash concentrations on the growth of Aspergillus niger and the bioleaching efficiency of heavy metals].
    Yang J; Wang QH; Wang Q; Xue J; Tian SL
    Huan Jing Ke Xue; 2008 Mar; 29(3):825-30. PubMed ID: 18649552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains.
    Madrigal-Arias JE; Argumedo-Delira R; Alarcón A; Mendoza-López MR; García-Barradas O; Cruz-Sánchez JS; Ferrera-Cerrato R; Jiménez-Fernández M
    Braz J Microbiol; 2015; 46(3):707-13. PubMed ID: 26413051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger.
    Biswas S; Dey R; Mukherjee S; Banerjee PC
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1547-59. PubMed ID: 23700146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioleaching of copper and nickel from mobile phone printed circuit board using Aspergillus fumigatus A2DS.
    Patel F; Lakshmi B
    Braz J Microbiol; 2021 Sep; 52(3):1475-1487. PubMed ID: 34146301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.
    Amin MM; Elaassy IE; El-Feky MG; Sallam AS; Talaat MS; Kawady NA
    J Environ Radioact; 2014 Aug; 134():76-82. PubMed ID: 24682031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory-systemic approach in Aspergillus niger for bioleaching improvement by controlling precipitation.
    Naderi A; Vakilchap F; Motamedian E; Mousavi SM
    Appl Microbiol Biotechnol; 2023 Dec; 107(23):7331-7346. PubMed ID: 37736792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioleaching of rare earth elements from monazite sand.
    Brisson VL; Zhuang WQ; Alvarez-Cohen L
    Biotechnol Bioeng; 2016 Feb; 113(2):339-48. PubMed ID: 26332985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies.
    Keshavarz S; Faraji F; Rashchi F; Mokmeli M
    J Environ Manage; 2021 May; 285():112153. PubMed ID: 33607567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS-4.410.
    Singh OV; Singh RP
    J Appl Microbiol; 2006 May; 100(5):1114-22. PubMed ID: 16630012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis.
    Cui J; Zhu N; Mao F; Wu P; Dang Z
    Sci Total Environ; 2021 Oct; 790():148151. PubMed ID: 34111782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.