These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 27295414)
1. Spectral quality of photo-selective nets improves phytochemicals and aroma volatiles in coriander leaves (Coriandrum sativum L.) after postharvest storage. Buthelezi MN; Soundy P; Jifon J; Sivakumar D J Photochem Photobiol B; 2016 Aug; 161():328-34. PubMed ID: 27295414 [TBL] [Abstract][Full Text] [Related]
2. Effect of photo-selective nettings on post-harvest quality and bioactive compounds in selected tomato cultivars. Selahle MK; Sivakumar D; Soundy P J Sci Food Agric; 2014 Aug; 94(11):2187-95. PubMed ID: 24338287 [TBL] [Abstract][Full Text] [Related]
3. Bioactive Compounds and Fruit Quality of Green Sweet Pepper Grown under Different Colored Shade Netting during Postharvest Storage. Mashabela MN; Selahle KM; Soundy P; Crosby KM; Sivakumar D J Food Sci; 2015 Nov; 80(11):H2612-8. PubMed ID: 26473620 [TBL] [Abstract][Full Text] [Related]
4. Changes in Functional Compounds, Volatiles, and Antioxidant Properties of Culinary Herb Coriander Leaves ( Shoko T; Manhivi VE; Mtlhako M; Sivakumar D Front Nutr; 2022; 9():856484. PubMed ID: 35634386 [TBL] [Abstract][Full Text] [Related]
5. Postharvest responses of red and yellow sweet peppers grown under photo-selective nets. Selahle KM; Sivakumar D; Jifon J; Soundy P Food Chem; 2015 Apr; 173():951-6. PubMed ID: 25466111 [TBL] [Abstract][Full Text] [Related]
7. Influence of the isolation procedure on coriander leaf volatiles with some correlation to the enzymatic activity. To Quynh CT; Iijima Y; Kubota K J Agric Food Chem; 2010 Jan; 58(2):1093-9. PubMed ID: 19916543 [TBL] [Abstract][Full Text] [Related]
8. Phytochemical profile of Orthosiphon aristatus extracts after storage: Rosmarinic acid and other caffeic acid derivatives. Chua LS; Lau CH; Chew CY; Ismail NIM; Soontorngun N Phytomedicine; 2018 Jan; 39():49-55. PubMed ID: 29433683 [TBL] [Abstract][Full Text] [Related]
9. Growth, productivity and phytochemicals of Coriander in responses to foliar application of Acacia saligna fruit extract as a biostimulant under field conditions. Alkharpotly AA; Abd-Elkader DY; Salem MZM; Hassan HS Sci Rep; 2024 Feb; 14(1):2921. PubMed ID: 38316894 [TBL] [Abstract][Full Text] [Related]
10. Physiological responses and antioxidant properties of coriander plants (Coriandrum sativum L.) under different light intensities of red and blue lights. Lin HH; Lin KH; Yang MJ; Nguyen HC; Wang HJ; Huang HX; Huang MY Sci Rep; 2022 Dec; 12(1):21139. PubMed ID: 36477410 [TBL] [Abstract][Full Text] [Related]
11. Phytochemical screening, antioxidant activity, total phenolic and total flavonoid contents of seven local varieties of Rosa indica L. Zahid K; Ahmed M; Khan F Nat Prod Res; 2018 May; 32(10):1239-1243. PubMed ID: 28539055 [TBL] [Abstract][Full Text] [Related]
12. Phytochemical and bioactive profile of Coriandrum sativum L. Wei JN; Liu ZH; Zhao YP; Zhao LL; Xue TK; Lan QK Food Chem; 2019 Jul; 286():260-267. PubMed ID: 30827604 [TBL] [Abstract][Full Text] [Related]
13. Plant architecture and phytochemical composition of basil (Ocimum basilicum L.) under the influence of light from microwave plasma and high-pressure sodium lamps. Dörr OS; Brezina S; Rauhut D; Mibus H J Photochem Photobiol B; 2020 Jan; 202():111678. PubMed ID: 31734433 [TBL] [Abstract][Full Text] [Related]
14. Coriander (Coriandrum sativum L.) and its bioactive constituents. Laribi B; Kouki K; M'Hamdi M; Bettaieb T Fitoterapia; 2015 Jun; 103():9-26. PubMed ID: 25776008 [TBL] [Abstract][Full Text] [Related]
15. Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants. Nenadis N; Llorens L; Koufogianni A; Díaz L; Font J; Gonzalez JA; Verdaguer D J Photochem Photobiol B; 2015 Dec; 153():435-44. PubMed ID: 26562808 [TBL] [Abstract][Full Text] [Related]
16. UV-B antagonises shade avoidance and increases levels of the flavonoid quercetin in coriander (Coriandrum sativum). Fraser DP; Sharma A; Fletcher T; Budge S; Moncrieff C; Dodd AN; Franklin KA Sci Rep; 2017 Dec; 7(1):17758. PubMed ID: 29259256 [TBL] [Abstract][Full Text] [Related]
17. Impact of blanching on polyphenol stability and antioxidant capacity of innovative coriander (Coriandrum sativum L.) pastes. Kaiser A; Kammerer DR; Carle R Food Chem; 2013 Sep; 140(1-2):332-9. PubMed ID: 23578650 [TBL] [Abstract][Full Text] [Related]
18. Ethnobotanical and phytochemical aspects of the edible herb Coriandrum sativum L. Sobhani Z; Mohtashami L; Amiri MS; Ramezani M; Emami SA; Simal-Gandara J J Food Sci; 2022 Apr; 87(4):1386-1422. PubMed ID: 35279837 [TBL] [Abstract][Full Text] [Related]
19. Phytochemical Compounds from the Crop Byproducts of Tunisian Globe Artichoke Cultivars. Dabbou S; Dabbou S; Flamini G; Pandino G; Gasco L; Helal AN Chem Biodivers; 2016 Nov; 13(11):1475-1483. PubMed ID: 27449402 [TBL] [Abstract][Full Text] [Related]
20. Effect of different drying methods on chlorophyll, ascorbic acid and antioxidant compounds retention of leaves of Hibiscus sabdariffa L. Kumar SS; Manoj P; Shetty NP; Giridhar P J Sci Food Agric; 2015 Jul; 95(9):1812-20. PubMed ID: 25139828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]