BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27295495)

  • 1. Efficient nanobiocatalytic systems of nuclease P1 immobilized on PEG-NH2 modified graphene oxide: effects of interface property heterogeneity.
    Zhuang W; He L; Zhu J; Zheng J; Liu X; Dong Y; Wu J; Zhou J; Chen Y; Ying H
    Colloids Surf B Biointerfaces; 2016 Sep; 145():785-794. PubMed ID: 27295495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme Immobilization on Functionalized Graphene Oxide Nanosheets: Efficient and Robust Biocatalysts.
    Soozanipour A; Taheri-Kafrani A
    Methods Enzymol; 2018; 609():371-403. PubMed ID: 30244798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of Laccase Through Immobilization on Functionalized GO-Derivatives.
    Chatzikonstantinou AV; Gkantzou E; Gournis D; Patila M; Stamatis H
    Methods Enzymol; 2018; 609():47-81. PubMed ID: 30244799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation.
    Xu M; Zhu J; Wang F; Xiong Y; Wu Y; Wang Q; Weng J; Zhang Z; Chen W; Liu S
    ACS Nano; 2016 Mar; 10(3):3267-81. PubMed ID: 26855010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Carriers Based on ZnO Nanoparticles Decorated on Graphene Oxide (GO) Nanosheets for Efficient Immobilization of Lipase from Candida rugosa.
    Zhang S; Shi J; Deng Q; Zheng M; Wan C; Zheng C; Li Y; Huang F
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28753931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile immobilization of Bacillus licheniformis γ-glutamyltranspeptidase onto graphene oxide nanosheets and its application to the biocatalytic synthesis of γ-l-glutamyl peptides.
    Lin LL; Chi MC; Lan YJ; Lin MG; Juang TY; Wang TF
    Int J Biol Macromol; 2018 Oct; 117():1326-1333. PubMed ID: 29183740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction.
    Zhang Y; Zhang J; Huang X; Zhou X; Wu H; Guo S
    Small; 2012 Jan; 8(1):154-9. PubMed ID: 22038754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xylanase immobilization on modified superparamagnetic graphene oxide nanocomposite: Effect of PEGylation on activity and stability.
    Mehnati-Najafabadi V; Taheri-Kafrani A; Bordbar AK
    Int J Biol Macromol; 2018 Feb; 107(Pt A):418-425. PubMed ID: 28888544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide immobilized enzymes show high thermal and solvent stability.
    Hermanová S; Zarevúcká M; Bouša D; Pumera M; Sofer Z
    Nanoscale; 2015 Mar; 7(13):5852-8. PubMed ID: 25757536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of glucoamylase on triazine-functionalized Fe
    Amirbandeh M; Taheri-Kafrani A
    Int J Biol Macromol; 2016 Dec; 93(Pt A):1183-1191. PubMed ID: 27693337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective.
    Adeel M; Bilal M; Rasheed T; Sharma A; Iqbal HMN
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1430-1440. PubMed ID: 30261251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement in ionic liquid tolerance of cellulase immobilized on PEGylated graphene oxide nanosheets: Application in saccharification of lignocellulose.
    Xu J; Sheng Z; Wang X; Liu X; Xia J; Xiong P; He B
    Bioresour Technol; 2016 Jan; 200():1060-4. PubMed ID: 26526093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of glucose oxidase on polydopamine-functionalized graphene oxide.
    Zhou L; Jiang Y; Ma L; He Y; Gao J
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1007-17. PubMed ID: 25355003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel.
    Xu Z; Wang S; Li Y; Wang M; Shi P; Huang X
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17268-76. PubMed ID: 25216036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of Novel Enzyme-Graphene Oxide Catalytic Interface with Improved Enzymatic Performance and Its Assembly Mechanism.
    Chen Y; Luo Z; Lu X
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11349-11359. PubMed ID: 30843386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Stability and Reusability of Alcohol Dehydrogenase Covalently Immobilized on Magnetic Graphene Oxide Nanocomposites.
    Liu L; Yu J; Chen X
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1213-20. PubMed ID: 26353636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide.
    Zhang X; Huang PJ; Servos MR; Liu J
    Langmuir; 2012 Oct; 28(40):14330-7. PubMed ID: 22989102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
    Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K
    Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of a Mesophilic Lipase on Graphene Oxide: Stability, Activity, and Reusability Insights.
    Dutta N; Saha MK
    Methods Enzymol; 2018; 609():247-272. PubMed ID: 30244793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.