These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 27295495)
21. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. Jiang B; Yang K; Zhao Q; Wu Q; Liang Z; Zhang L; Peng X; Zhang Y J Chromatogr A; 2012 Sep; 1254():8-13. PubMed ID: 22871380 [TBL] [Abstract][Full Text] [Related]
22. Graphene oxide as a matrix for the immobilization of glucose oxidase. Zhou L; Jiang Y; Gao J; Zhao X; Ma L Appl Biochem Biotechnol; 2012 Nov; 168(6):1635-42. PubMed ID: 22965306 [TBL] [Abstract][Full Text] [Related]
23. The development of nanobiocatalysis via the immobilization of cellulase on composite magnetic nanomaterial for enhanced loading capacity and catalytic activity. Han J; Luo P; Wang Y; Wang L; Li C; Zhang W; Dong J; Ni L Int J Biol Macromol; 2018 Nov; 119():692-700. PubMed ID: 30071227 [TBL] [Abstract][Full Text] [Related]
24. Graphene oxide as a matrix for enzyme immobilization. Zhang J; Zhang F; Yang H; Huang X; Liu H; Zhang J; Guo S Langmuir; 2010 May; 26(9):6083-5. PubMed ID: 20297789 [TBL] [Abstract][Full Text] [Related]
25. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Zhou T; Zhang B; Wei P; Du Y; Zhou H; Yu M; Yan L; Zhang W; Nie G; Chen C; Tu Y; Wei T Biomaterials; 2014 Dec; 35(37):9833-9843. PubMed ID: 25212524 [TBL] [Abstract][Full Text] [Related]
26. Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Bilal M; Asgher M; Cheng H; Yan Y; Iqbal HMN Crit Rev Biotechnol; 2019 Mar; 39(2):202-219. PubMed ID: 30394121 [TBL] [Abstract][Full Text] [Related]
27. The performance of immobilized Candida rugosa lipase on various surface modified graphene oxide nanosheets. Jafarian F; Bordbar AK; Zare A; Khosropour A Int J Biol Macromol; 2018 May; 111():1166-1174. PubMed ID: 29371152 [TBL] [Abstract][Full Text] [Related]
28. Influence of Three Commercial Graphene Derivatives on the Catalytic Properties of a Lactobacillus plantarum α-l-Rhamnosidase When Used as Immobilization Matrices. Antón-Millán N; García-Tojal J; Marty-Roda M; Garroni S; Cuesta-López S; Tamayo-Ramos JA ACS Appl Mater Interfaces; 2018 May; 10(21):18170-18182. PubMed ID: 29732878 [TBL] [Abstract][Full Text] [Related]
29. Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Tao Y; Ju E; Ren J; Qu X Biomaterials; 2014 Dec; 35(37):9963-9971. PubMed ID: 25224368 [TBL] [Abstract][Full Text] [Related]
30. Armored Enzyme-Nanohybrids and Their Catalytic Function Under Challenging Conditions. Zore OV; Kasi RM; Kumar CV Methods Enzymol; 2017; 590():169-192. PubMed ID: 28411637 [TBL] [Abstract][Full Text] [Related]
31. Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Pavlidis IV; Vorhaben T; Tsoufis T; Rudolf P; Bornscheuer UT; Gournis D; Stamatis H Bioresour Technol; 2012 Jul; 115():164-71. PubMed ID: 22113071 [TBL] [Abstract][Full Text] [Related]
32. Functionalized graphene oxide in enzyme engineering: a selective modulator for enzyme activity and thermostability. Jin L; Yang K; Yao K; Zhang S; Tao H; Lee ST; Liu Z; Peng R ACS Nano; 2012 Jun; 6(6):4864-75. PubMed ID: 22574614 [TBL] [Abstract][Full Text] [Related]
33. Increased thermal stability of cold-adapted esterase at ambient temperatures by immobilization on graphene oxide. Lee H; Jeong HK; Han J; Chung HS; Jang SH; Lee C Bioresour Technol; 2013 Nov; 148():620-3. PubMed ID: 24080443 [TBL] [Abstract][Full Text] [Related]
34. Covalent immobilization of peanut β-amylase for producing industrial nano-biocatalysts: A comparative study of kinetics, stability and reusability of the immobilized enzyme. Das R; Talat M; Srivastava ON; Kayastha AM Food Chem; 2018 Apr; 245():488-499. PubMed ID: 29287400 [TBL] [Abstract][Full Text] [Related]
35. Surface Modulation of Graphene Oxide for Amidase Immobilization with High Loadings for Efficient Biocatalysis. Xu K; Wang B; Si C; Lin C; Zheng R; Zheng Y Biomolecules; 2021 Sep; 11(10):. PubMed ID: 34680032 [TBL] [Abstract][Full Text] [Related]
36. Graphene oxide as a protein matrix: influence on protein biophysical properties. Hernández-Cancel G; Suazo-Dávila D; Ojeda-Cruzado AJ; García-Torres D; Cabrera CR; Griebenow K J Nanobiotechnology; 2015 Oct; 13():70. PubMed ID: 26482026 [TBL] [Abstract][Full Text] [Related]
37. Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal. Li H; Hou J; Duan L; Ji C; Zhang Y; Chen V J Hazard Mater; 2017 Sep; 338():93-101. PubMed ID: 28535481 [TBL] [Abstract][Full Text] [Related]
38. Catalytic Oxidation of Phenol and 2,4-Dichlorophenol by Using Horseradish Peroxidase Immobilized on Graphene Oxide/Fe₃O₄. Chang Q; Huang J; Ding Y; Tang H Molecules; 2016 Aug; 21(8):. PubMed ID: 27517896 [TBL] [Abstract][Full Text] [Related]
39. Studies on the properties of graphene oxide-alkaline protease bio-composites. Su R; Shi P; Zhu M; Hong F; Li D Bioresour Technol; 2012 Jul; 115():136-40. PubMed ID: 22244904 [TBL] [Abstract][Full Text] [Related]
40. Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing. Zhen G; Eggli V; Vörös J; Zammaretti P; Textor M; Glockshuber R; Kuennemann E Langmuir; 2004 Nov; 20(24):10464-73. PubMed ID: 15544374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]