These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27295644)

  • 1. Parallel and Space-Efficient Construction of Burrows-Wheeler Transform and Suffix Array for Big Genome Data.
    Liu Y; Hankeln T; Schmidt B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):592-8. PubMed ID: 27295644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Construction of a Complete Index for Pan-Genomics Read Alignment.
    Kuhnle A; Mun T; Boucher C; Gagie T; Langmead B; Manzini G
    J Comput Biol; 2020 Apr; 27(4):500-513. PubMed ID: 32181684
    [No Abstract]   [Full Text] [Related]  

  • 3. CUSHAW: a CUDA compatible short read aligner to large genomes based on the Burrows-Wheeler transform.
    Liu Y; Schmidt B; Maskell DL
    Bioinformatics; 2012 Jul; 28(14):1830-7. PubMed ID: 22576173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. deBWT: parallel construction of Burrows-Wheeler Transform for large collection of genomes with de Bruijn-branch encoding.
    Liu B; Zhu D; Wang Y
    Bioinformatics; 2016 Jun; 32(12):i174-i182. PubMed ID: 27307614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast SNP analysis using the Burrows-Wheeler transform of short-read data.
    Kimura K; Koike A
    Bioinformatics; 2015 May; 31(10):1577-83. PubMed ID: 25609790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable-order reference-free variant discovery with the Burrows-Wheeler Transform.
    Prezza N; Pisanti N; Sciortino M; Rosone G
    BMC Bioinformatics; 2020 Sep; 21(Suppl 8):260. PubMed ID: 32938358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LSG: An External-Memory Tool to Compute String Graphs for Next-Generation Sequencing Data Assembly.
    Bonizzoni P; Vedova GD; Pirola Y; Previtali M; Rizzi R
    J Comput Biol; 2016 Mar; 23(3):137-49. PubMed ID: 26953874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform.
    Baier U; Beller T; Ohlebusch E
    Bioinformatics; 2016 Feb; 32(4):497-504. PubMed ID: 26504144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and memory efficient approach for mapping NGS reads to a reference genome.
    Kumar S; Agarwal S; Ranvijay
    J Bioinform Comput Biol; 2019 Apr; 17(2):1950008. PubMed ID: 31057068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A space-efficient construction of the Burrows-Wheeler transform for genomic data.
    Lippert RA; Mobarry CM; Walenz BP
    J Comput Biol; 2005 Sep; 12(7):943-51. PubMed ID: 16201914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Faster single-end alignment generation utilizing multi-thread for BWA.
    Jo H; Koh G
    Biomed Mater Eng; 2015; 26 Suppl 1():S1791-6. PubMed ID: 26405948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved encoding of genetic variation in a Burrows-Wheeler transform.
    Büchler T; Ohlebusch E
    Bioinformatics; 2020 Mar; 36(5):1413-1419. PubMed ID: 31613311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FSG: Fast String Graph Construction for De Novo Assembly.
    Bonizzoni P; Vedova GD; Pirola Y; Previtali M; Rizzi R
    J Comput Biol; 2017 Oct; 24(10):953-968. PubMed ID: 28715269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-threading the generation of Burrows-Wheeler Alignment.
    Jo H
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform.
    Cox AJ; Bauer MJ; Jakobi T; Rosone G
    Bioinformatics; 2012 Jun; 28(11):1415-9. PubMed ID: 22556365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. sBWT: memory efficient implementation of the hardware-acceleration-friendly Schindler transform for the fast biological sequence mapping.
    Chang CH; Chou MT; Wu YC; Hong TW; Li YL; Yang CH; Hung JH
    Bioinformatics; 2016 Nov; 32(22):3498-3500. PubMed ID: 27412087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT).
    Durbin R
    Bioinformatics; 2014 May; 30(9):1266-72. PubMed ID: 24413527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of genomic rearrangements by using the Burrows-Wheeler transform of short-read data.
    Kimura K; Koike A
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S5. PubMed ID: 26678411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. YOABS: yet other aligner of biological sequences--an efficient linearly scaling nucleotide aligner.
    Galinsky VL
    Bioinformatics; 2012 Apr; 28(8):1070-7. PubMed ID: 22402614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.