These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27295677)

  • 1. Anatomical Directional Dissimilarities in Tri-axial Swallowing Accelerometry Signals.
    Movahedi F; Kurosu A; Coyle JL; Perera S; Sejdic E
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):447-458. PubMed ID: 27295677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of penetration--aspiration versus healthy swallows using dual-axis swallowing accelerometry signals in dysphagic subjects.
    Sejdić E; Steele CM; Chau T
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1859-66. PubMed ID: 23372074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison between swallowing sounds and vibrations in patients with dysphagia.
    Movahedi F; Kurosu A; Coyle JL; Perera S; Sejdić E
    Comput Methods Programs Biomed; 2017 Jun; 144():179-187. PubMed ID: 28495001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of normal and dysphagic swallows by acoustical means.
    Lazareck LJ; Moussavi ZM
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2103-12. PubMed ID: 15605857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative classification of pediatric swallowing through accelerometry.
    Merey C; Kushki A; Sejdić E; Berall G; Chau T
    J Neuroeng Rehabil; 2012 Jun; 9():34. PubMed ID: 22682474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Non-invasive Device for Swallow Screening in Patients at Risk of Oropharyngeal Dysphagia: Results from a Prospective Exploratory Study.
    Steele CM; Mukherjee R; Kortelainen JM; Pölönen H; Jedwab M; Brady SL; Theimer KB; Langmore S; Riquelme LF; Swigert NB; Bath PM; Goldstein LB; Hughes RL; Leifer D; Lees KR; Meretoja A; Muehlemann N
    Dysphagia; 2019 Oct; 34(5):698-707. PubMed ID: 30612234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time and time-frequency characterization of dual-axis swallowing accelerometry signals.
    Lee J; Steele CM; Chau T
    Physiol Meas; 2008 Sep; 29(9):1105-20. PubMed ID: 18756027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyolaryngeal excursion as the physiological source of swallowing accelerometry signals.
    Zoratto DC; Chau T; Steele CM
    Physiol Meas; 2010 Jun; 31(6):843-55. PubMed ID: 20479519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of dual-axis swallowing accelerometry signals in healthy subjects with analysis of anthropometric effects on duration of swallowing activities.
    Sejdić E; Steele CM; Chau T
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1090-7. PubMed ID: 19171514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the statistical persistence of dual-axis swallowing accelerometry signals.
    Sejdić E; Steele CM; Chau T
    Comput Biol Med; 2010; 40(11-12):839-44. PubMed ID: 21035113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of increased fluid viscosity on swallowing sounds in healthy adults.
    Jestrović I; Dudik JM; Luan B; Coyle JL; Sejdić E
    Biomed Eng Online; 2013 Sep; 12():90. PubMed ID: 24020398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic discrimination between safe and unsafe swallowing using a reputation-based classifier.
    Nikjoo MS; Steele CM; Sejdić E; Chau T
    Biomed Eng Online; 2011 Nov; 10():100. PubMed ID: 22085802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swallowing accelerometry signal feature variations with sensor displacement.
    Mamun KA; Steele CM; Chau T
    Med Eng Phys; 2015 Jul; 37(7):665-73. PubMed ID: 26003287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Association of High Resolution Cervical Auscultation Signal Features With Hyoid Bone Displacement During Swallowing.
    He Q; Perera S; Khalifa Y; Zhang Z; Mahoney AS; Sabry A; Donohue C; Coyle JL; Sejdic E
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1810-1816. PubMed ID: 31443032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature selection for swallowing sounds classification.
    Yadollahi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3172-5. PubMed ID: 18002669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of liquid stimuli on dual-axis swallowing accelerometry signals in a healthy population.
    Lee J; Sejdić E; Steele CM; Chau T
    Biomed Eng Online; 2010 Feb; 9():7. PubMed ID: 20128928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropometric and demographic correlates of dual-axis swallowing accelerometry signal characteristics: a canonical correlation analysis.
    Hanna F; Molfenter SM; Cliffe RE; Chau T; Steele CM
    Dysphagia; 2010 Jun; 25(2):94-103. PubMed ID: 19495874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling analysis of baseline dual-axis cervical accelerometry signals.
    Sejdić E; Steele CM; Chau T
    Comput Methods Programs Biomed; 2011 Sep; 103(3):113-20. PubMed ID: 20708292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals.
    Dudik JM; Kurosu A; Coyle JL; Sejdić E
    Comput Biol Med; 2015 Apr; 59():10-18. PubMed ID: 25658505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of liquid bolus consistency and delivery method on aspiration and pharyngeal retention in dysphagia patients.
    Kuhlemeier KV; Palmer JB; Rosenberg D
    Dysphagia; 2001; 16(2):119-22. PubMed ID: 11305221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.