These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27295685)

  • 1. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.
    Gu D; Jian X; Zhang C; Hua Q
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1410-1418. PubMed ID: 27295685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of genome-scale metabolic network model in metabolic engineering.
    Kim B; Kim WJ; Kim DI; Lee SY
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):339-48. PubMed ID: 25465049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Logical transformation of genome-scale metabolic models for gene level applications and analysis.
    Zhang C; Ji B; Mardinoglu A; Nielsen J; Hua Q
    Bioinformatics; 2015 Jul; 31(14):2324-31. PubMed ID: 25735769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models.
    Erdrich P; Steuer R; Klamt S
    BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FastPros: screening of reaction knockout strategies for metabolic engineering.
    Ohno S; Shimizu H; Furusawa C
    Bioinformatics; 2014 Apr; 30(7):981-7. PubMed ID: 24257186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust design of microbial strains.
    Costanza J; Carapezza G; Angione C; Lió P; Nicosia G
    Bioinformatics; 2012 Dec; 28(23):3097-104. PubMed ID: 23044547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. lumpGEM: Systematic generation of subnetworks and elementally balanced lumped reactions for the biosynthesis of target metabolites.
    Ataman M; Hatzimanikatis V
    PLoS Comput Biol; 2017 Jul; 13(7):e1005513. PubMed ID: 28727789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.
    Nair G; Jungreuthmayer C; Zanghellini J
    BMC Bioinformatics; 2017 Feb; 18(1):78. PubMed ID: 28143607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GeneReg: a constraint-based approach for design of feasible metabolic engineering strategies at the gene level.
    Razaghi-Moghadam Z; Nikoloski Z
    Bioinformatics; 2021 Jul; 37(12):1717-1723. PubMed ID: 33245091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrative approach towards completing genome-scale metabolic networks.
    Christian N; May P; Kempa S; Handorf T; Ebenhöh O
    Mol Biosyst; 2009 Dec; 5(12):1889-903. PubMed ID: 19763335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.
    Ren S; Zeng B; Qian X
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S17. PubMed ID: 23368729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models.
    Ataman M; Hernandez Gardiol DF; Fengos G; Hatzimanikatis V
    PLoS Comput Biol; 2017 Jul; 13(7):e1005444. PubMed ID: 28727725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of bioprocess productivity based on metabolic-genetic network models with bilevel dynamic programming.
    Jabarivelisdeh B; Waldherr S
    Biotechnol Bioeng; 2018 Jul; 115(7):1829-1841. PubMed ID: 29578608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FastKnock: an efficient next-generation approach to identify all knockout strategies for strain optimization.
    Hassani L; Moosavi MR; Setoodeh P; Zare H
    Microb Cell Fact; 2024 Jan; 23(1):37. PubMed ID: 38287320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-scale modeling for metabolic engineering.
    Simeonidis E; Price ND
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):327-38. PubMed ID: 25578304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering missing reactions of metabolic networks by using gene co-expression data.
    Hosseini Z; Marashi SA
    Sci Rep; 2017 Feb; 7():41774. PubMed ID: 28150713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genome-scale metabolic network models using experimentally measured flux profiles.
    Herrgård MJ; Fong SS; Palsson BØ
    PLoS Comput Biol; 2006 Jul; 2(7):e72. PubMed ID: 16839195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IdealKnock: A framework for efficiently identifying knockout strategies leading to targeted overproduction.
    Gu D; Zhang C; Zhou S; Wei L; Hua Q
    Comput Biol Chem; 2016 Apr; 61():229-37. PubMed ID: 26948338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using flux balance analysis to guide microbial metabolic engineering.
    Curran KA; Crook NC; Alper HS
    Methods Mol Biol; 2012; 834():197-216. PubMed ID: 22144361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.