These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2729600)

  • 1. Retention mechanisms in reversed-phase liquid chromatography. Stationary-phase bonding density and partitioning.
    Sentell KB; Dorsey JG
    Anal Chem; 1989 May; 61(9):930-4. PubMed ID: 2729600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention mechanisms in reversed-phase chromatography. Stationary phase bonding density and solute selectivity.
    Sentell KB; Dorsey JG
    J Chromatogr; 1989 Jan; 461():193-207. PubMed ID: 2708472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of retention in reversed-phase liquid chromatography. 1. Stationary-phase considerations.
    Cole LA; Dorsey JG
    Anal Chem; 1992 Jul; 64(13):1317-23. PubMed ID: 1503212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of reequilibration time following gradient elution reversed-phase liquid chromatography.
    Cole LA; Dorsey JG
    Anal Chem; 1990 Jan; 62(1):16-21. PubMed ID: 2301727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of liquid-liquid partition coefficients by separation methods.
    Berthod A; Carda-Broch S
    J Chromatogr A; 2004 May; 1037(1-2):3-14. PubMed ID: 15214657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioavailability estimation by reversed-phase liquid chromatography: high bonding density C-18 phases for modeling biopartitioning processes.
    Hsieh MM; Dorsey JG
    Anal Chem; 1995 Jan; 67(1):48-57. PubMed ID: 7864391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular simulation study of the effects of stationary phase and solute chain length in reversed-phase liquid chromatography.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2012 Feb; 1223():24-34. PubMed ID: 22239960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a preformulation lipophilicity screen utilizing a C-18-derivatized polystyrene-divinylbenzene high-performance liquid chromatographic (HPLC) column.
    Lambert WJ; Wright LA; Stevens JK
    Pharm Res; 1990 Jun; 7(6):577-86. PubMed ID: 2367326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between 33 solutes and four cyano-containing stationary phases: gas chromatographic activity coefficients and the solvation parameter model.
    Santiuste JM; Takács JM
    Anal Bioanal Chem; 2003 Jul; 376(5):735-44. PubMed ID: 12819849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation II. Effects on solute retention.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2008 Sep; 1204(1):20-7. PubMed ID: 18687439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of gas-liquid partition coefficients of several organic solutes in trihexyl(tetradecyl)phosphonium bromide using capillary gas chromatography columns.
    Ronco NR; Menestrina F; Romero LM; Castells CB
    J Chromatogr A; 2017 Jun; 1501():134-141. PubMed ID: 28457488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention of C60 and C70 fullerenes on reversed-phase high-performance liquid chromatographic stationary phases.
    Cui Y; Lee ST; Olesik SV; Flory W; Mearini M
    J Chromatogr; 1992 Nov; 625(2):131-40. PubMed ID: 1474120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of hydrocarbon, fluorocarbon, and aromatic bonded RP-HPLC stationary phases by linear solvation energy relationships.
    Reta M; Carr PW; Sadek PC; Rutan SC
    Anal Chem; 1999 Aug; 71(16):3484-96. PubMed ID: 10464478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute-solvent interactions from gas chromatographic activity coefficients and the solvation parameter model for nitrogen-containing stationary phases.
    Santiuste JM
    J Chromatogr Sci; 2003 Apr; 41(4):215-22. PubMed ID: 12803811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of stationary phase solvation on shape selectivity and retention in reversed-phase liquid chromatography.
    Limsavarn L; Dorsey JG
    J Chromatogr A; 2006 Jan; 1102(1-2):143-53. PubMed ID: 16289120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of solute descriptors by chromatographic methods.
    Poole CF; Atapattu SN; Poole SK; Bell AK
    Anal Chim Acta; 2009 Oct; 652(1-2):32-53. PubMed ID: 19786169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the liquid nature of the stationary phase in counter-current chromatography V. The back-extrusion method.
    Lu Y; Pan Y; Berthod A
    J Chromatogr A; 2008 May; 1189(1-2):10-8. PubMed ID: 18036534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics and kinetics of solute transfer in reversed-phase liquid chromatography.
    McGuffin VL; Lee C
    J Chromatogr A; 2003 Feb; 987(1-2):3-15. PubMed ID: 12613792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention behaviour of a bonded reversed phase in a high-performance liquid chromatographic assay of serum theophylline.
    Hill RE
    J Chromatogr; 1977 May; 135(2):419-25. PubMed ID: 874025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary isotope effects in liquid chromatography behaviour of 2H and 3H labelled solutes and solvents.
    Valleix A; Carrat S; Caussignac C; Léonce E; Tchapla A
    J Chromatogr A; 2006 May; 1116(1-2):109-26. PubMed ID: 16631181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.