BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27296109)

  • 1. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials.
    Liu Z; Liu Z; Li J; Li W; Li J; Gu C; Li ZY
    Sci Rep; 2016 Jun; 6():27817. PubMed ID: 27296109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators.
    Li Z; Cakmakyapan S; Butun B; Daskalaki C; Tzortzakis S; Yang X; Ozbay E
    Opt Express; 2014 Nov; 22(22):26572-84. PubMed ID: 25401808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing.
    Hu H; Lu X; Huang J; Chen K; Su J; Yan Z; Tang C; Cai P
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bi-anisotropic Fano resonance in three-dimensional metamaterials.
    Moritake Y; Tanaka T
    Sci Rep; 2018 Jun; 8(1):9012. PubMed ID: 29899415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of plasmonic Fano resonance in metal-hole/split-ring-resonator metamaterials disclosed by temporal coupled-mode theory.
    Deng Q; Lin H; Li ZY
    Opt Express; 2023 Sep; 31(20):32322-32334. PubMed ID: 37859038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials.
    Chen J; Mao P; Xu R; Tang C; Liu Y; Wang Q; Zhang L
    Opt Express; 2015 Jun; 23(12):16238-45. PubMed ID: 26193596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators.
    Lee E; Seo IC; Jeong HY; An SC; Jun YC
    Sci Rep; 2017 Nov; 7(1):16186. PubMed ID: 29170527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z; Ye J
    Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities.
    Zhang Q; Wen X; Li G; Ruan Q; Wang J; Xiong Q
    ACS Nano; 2013 Dec; 7(12):11071-8. PubMed ID: 24215162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Five-fold plasmonic Fano resonances with giant bisignate circular dichroism.
    Tian X; Liu Z; Lin H; Jia B; Li ZY; Li J
    Nanoscale; 2018 Sep; 10(35):16630-16637. PubMed ID: 30155531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials.
    Li S; Nugraha PS; Su X; Chen X; Yang Q; Unferdorben M; Kovács F; Kunsági-Máté S; Liu M; Zhang X; Ouyang C; Li Y; Fülöp JA; Han J; Zhang W
    Opt Express; 2019 Feb; 27(3):2317-2326. PubMed ID: 30732270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of sharp multiple Fano resonances in optical metamaterials.
    Moritake Y; Kanamori Y; Hane K
    Opt Express; 2016 May; 24(9):9332-9. PubMed ID: 27137549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Fano resonances through coupling of dark modes in a dual-ring nanostructure.
    Grimmer M; Tao W; Fleischer M
    Opt Express; 2024 Jan; 32(2):1926-1940. PubMed ID: 38297734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional Fano resonance in a silicon nanosphere dimer.
    Yan J; Liu P; Lin Z; Wang H; Chen H; Wang C; Yang G
    ACS Nano; 2015 Mar; 9(3):2968-80. PubMed ID: 25683067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Fano resonances in spoof localized surface plasmons.
    Liao Z; Pan BC; Shen X; Cui TJ
    Opt Express; 2014 Jun; 22(13):15710-7. PubMed ID: 24977830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry-breaking induced magnetic Fano resonances in densely packed arrays of symmetric nanotrimers.
    Wang N; Zeisberger M; Huebner U; Giannini V; Schmidt MA
    Sci Rep; 2019 Feb; 9(1):2873. PubMed ID: 30814665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticrossing double Fano resonances generated in metallic/dielectric hybrid nanostructures using nonradiative anapole modes for enhanced nonlinear optical effects.
    Zhai WC; Qiao TZ; Cai DJ; Wang WJ; Chen JD; Chen ZH; Liu SD
    Opt Express; 2016 Nov; 24(24):27858-27869. PubMed ID: 27906354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials.
    Rao SJM; Srivastava YK; Kumar G; Roy Chowdhury D
    Sci Rep; 2018 Nov; 8(1):16773. PubMed ID: 30425280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic plasmonic Fano resonance at optical frequency.
    Bao Y; Hu Z; Li Z; Zhu X; Fang Z
    Small; 2015 May; 11(18):2177-81. PubMed ID: 25594885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.