These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Axonal regeneration in spinal cord injury: key role of galectin-1]. Quintá HR; Pasquini JM; Rabinovich GA; Pasquini LA Medicina (B Aires); 2014; 74(4):321-5. PubMed ID: 25188662 [TBL] [Abstract][Full Text] [Related]
3. Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury. Quintá HR; Pasquini JM; Rabinovich GA; Pasquini LA Cell Death Differ; 2014 Jun; 21(6):941-55. PubMed ID: 24561343 [TBL] [Abstract][Full Text] [Related]
4. Oxidized galectin-1 stimulates the migration of Schwann cells from both proximal and distal stumps of transected nerves and promotes axonal regeneration after peripheral nerve injury. Fukaya K; Hasegawa M; Mashitani T; Kadoya T; Horie H; Hayashi Y; Fujisawa H; Tachibana O; Kida S; Yamashita J J Neuropathol Exp Neurol; 2003 Feb; 62(2):162-72. PubMed ID: 12578226 [TBL] [Abstract][Full Text] [Related]
5. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. Gallo G J Cell Sci; 2006 Aug; 119(Pt 16):3413-23. PubMed ID: 16899819 [TBL] [Abstract][Full Text] [Related]
6. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. Horie H; Kadoya T; Hikawa N; Sango K; Inoue H; Takeshita K; Asawa R; Hiroi T; Sato M; Yoshioka T; Ishikawa Y J Neurosci; 2004 Feb; 24(8):1873-80. PubMed ID: 14985427 [TBL] [Abstract][Full Text] [Related]
7. Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse. Fournier AE; Nakamura F; Kawamoto S; Goshima Y; Kalb RG; Strittmatter SM J Cell Biol; 2000 Apr; 149(2):411-22. PubMed ID: 10769032 [TBL] [Abstract][Full Text] [Related]
8. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Kaneko S; Iwanami A; Nakamura M; Kishino A; Kikuchi K; Shibata S; Okano HJ; Ikegami T; Moriya A; Konishi O; Nakayama C; Kumagai K; Kimura T; Sato Y; Goshima Y; Taniguchi M; Ito M; He Z; Toyama Y; Okano H Nat Med; 2006 Dec; 12(12):1380-9. PubMed ID: 17099709 [TBL] [Abstract][Full Text] [Related]
9. Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets. Yamane J; Nakamura M; Iwanami A; Sakaguchi M; Katoh H; Yamada M; Momoshima S; Miyao S; Ishii K; Tamaoki N; Nomura T; Okano HJ; Kanemura Y; Toyama Y; Okano H J Neurosci Res; 2010 May; 88(7):1394-405. PubMed ID: 20091712 [TBL] [Abstract][Full Text] [Related]
10. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1. Pasquini JM; Barrantes FJ; Quintá HR J Comp Neurol; 2017 Sep; 525(13):2861-2875. PubMed ID: 28512739 [TBL] [Abstract][Full Text] [Related]
11. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury. Zou Y; Stagi M; Wang X; Yigitkanli K; Siegel CS; Nakatsu F; Cafferty WB; Strittmatter SM J Neurosci; 2015 Jul; 35(29):10429-39. PubMed ID: 26203138 [TBL] [Abstract][Full Text] [Related]
12. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord. Scott AL; Ramer MS Brain; 2010 Feb; 133(Pt 2):421-32. PubMed ID: 20047901 [TBL] [Abstract][Full Text] [Related]
13. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration. Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366 [TBL] [Abstract][Full Text] [Related]
14. Axonal Regeneration Mediated by a Novel Axonal Guidance Pair, Galectin-1 and Secernin-1. Yang X; Tohda C Mol Neurobiol; 2023 Mar; 60(3):1250-1266. PubMed ID: 36437381 [TBL] [Abstract][Full Text] [Related]
15. A novel in vitro injury model based on microcontact printing demonstrates negative effects of hydrogen peroxide on axonal regeneration both in absence and presence of glia. Yaka C; Björk P; Schönberg T; Erlandsson A J Neurotrauma; 2013 Mar; 30(5):392-402. PubMed ID: 23057993 [TBL] [Abstract][Full Text] [Related]
16. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. Dent EW; Barnes AM; Tang F; Kalil K J Neurosci; 2004 Mar; 24(12):3002-12. PubMed ID: 15044539 [TBL] [Abstract][Full Text] [Related]
17. Galectin-1beta, a natural monomeric form of galectin-1 lacking its six amino-terminal residues promotes axonal regeneration but not cell death. Miura T; Takahashi M; Horie H; Kurushima H; Tsuchimoto D; Sakumi K; Nakabeppu Y Cell Death Differ; 2004 Oct; 11(10):1076-83. PubMed ID: 15181456 [TBL] [Abstract][Full Text] [Related]
18. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. Ketschek A; Gallo G J Neurosci; 2010 Sep; 30(36):12185-97. PubMed ID: 20826681 [TBL] [Abstract][Full Text] [Related]
19. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo. Peterson SL; Nguyen HX; Mendez OA; Anderson AJ J Neurosci; 2015 Mar; 35(10):4332-49. PubMed ID: 25762679 [TBL] [Abstract][Full Text] [Related]
20. Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats. Wang YT; Lu XM; Zhu F; Huang P; Yu Y; Long ZY; Wu YM Mol Neurobiol; 2015 Dec; 52(3):1821-1834. PubMed ID: 25394381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]