BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27296367)

  • 1. Tuning the ion selectivity of glutamate transporter-associated uncoupled conductances.
    Cater RJ; Vandenberg RJ; Ryan RM
    J Gen Physiol; 2016 Jul; 148(1):13-24. PubMed ID: 27296367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
    Ryan RM; Kortt NC; Sirivanta T; Vandenberg RJ
    J Neurochem; 2010 Jul; 114(2):565-75. PubMed ID: 20477940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The domain interface of the human glutamate transporter EAAT1 mediates chloride permeation.
    Cater RJ; Vandenberg RJ; Ryan RM
    Biophys J; 2014 Aug; 107(3):621-629. PubMed ID: 25099801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic Characterization of the Chloride Permeation Pathway in the Human Excitatory Amino Acid Transporter 1 (EAAT1).
    Pant S; Wu Q; Ryan R; Tajkhorshid E
    ACS Chem Neurosci; 2022 Mar; 13(6):776-785. PubMed ID: 35192345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in transmembrane domains 5 and 7 of the human excitatory amino acid transporter 1 affect the substrate-activated anion channel.
    Huang S; Vandenberg RJ
    Biochemistry; 2007 Aug; 46(34):9685-92. PubMed ID: 17676873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mutation in Transmembrane Domain 7 (TM7) of Excitatory Amino Acid Transporters Disrupts the Substrate-dependent Gating of the Intrinsic Anion Conductance and Drives the Channel into a Constitutively Open State.
    Torres-Salazar D; Jiang J; Divito CB; Garcia-Olivares J; Amara SG
    J Biol Chem; 2015 Sep; 290(38):22977-90. PubMed ID: 26203187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of cation binding in determining substrate selectivity of glutamate transporters.
    Huang S; Ryan RM; Vandenberg RJ
    J Biol Chem; 2009 Feb; 284(7):4510-5. PubMed ID: 19074430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1.
    Ryan RM; Vandenberg RJ
    J Biol Chem; 2002 Apr; 277(16):13494-500. PubMed ID: 11815608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance.
    Seal RP; Shigeri Y; Eliasof S; Leighton BH; Amara SG
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15324-9. PubMed ID: 11752470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1.
    Vandenberg RJ; Handford CA; Campbell EM; Ryan RM; Yool AJ
    Biochem J; 2011 Oct; 439(2):333-40. PubMed ID: 21732909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters.
    Cheng MH; Torres-Salazar D; Gonzalez-Suarez AD; Amara SG; Bahar I
    Elife; 2017 Jun; 6():. PubMed ID: 28569666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caveolin-1 Sensitivity of Excitatory Amino Acid Transporters EAAT1, EAAT2, EAAT3, and EAAT4.
    Abousaab A; Warsi J; Elvira B; Lang F
    J Membr Biol; 2016 Jun; 249(3):239-49. PubMed ID: 26690923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii.
    Ryan RM; Compton EL; Mindell JA
    J Biol Chem; 2009 Jun; 284(26):17540-8. PubMed ID: 19380583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter.
    Cater RJ; Ryan RM; Vandenberg RJ
    Neurochem Res; 2016 Mar; 41(3):593-9. PubMed ID: 26303507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 4b-4c loop of excitatory amino acid transporter 1 containing four critical residues essential for substrate transport.
    He S; Zhang W; Zhang X; Xu P; Hong M; Qu S
    J Biomol Struct Dyn; 2020 Aug; 38(12):3599-3609. PubMed ID: 31496428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and channel functions in EAATs: the missing link.
    Torres-Salazar D; Gonzalez-Suarez AD; Amara SG
    Channels (Austin); 2016; 10(2):86-7. PubMed ID: 26683197
    [No Abstract]   [Full Text] [Related]  

  • 17. Molecular determinants for functional differences between alanine-serine-cysteine transporter 1 and other glutamate transporter family members.
    Scopelliti AJ; Ryan RM; Vandenberg RJ
    J Biol Chem; 2013 Mar; 288(12):8250-8257. PubMed ID: 23393130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for differential inhibition of glutamate transporter subtypes by zinc ions.
    Vandenberg RJ; Mitrovic AD; Johnston GA
    Mol Pharmacol; 1998 Jul; 54(1):189-96. PubMed ID: 9658205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway.
    Ryan RM; Mitrovic AD; Vandenberg RJ
    J Biol Chem; 2004 May; 279(20):20742-51. PubMed ID: 14982939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different functional roles of arginine residues 39 and 61 and tyrosine residue 98 in transport and channel mode of the glutamate transporter EAAC1.
    Zhu Y; Vasilets LA; Fei J; Guo L; Schwarz W
    Biochim Biophys Acta; 2004 Oct; 1665(1-2):20-8. PubMed ID: 15471567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.