These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27296612)

  • 1. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection.
    Chen J; Park B
    J Food Prot; 2016 Jun; 79(6):1055-69. PubMed ID: 27296612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber-Optic-Based Biosensor as an Innovative Technology for Point-of-Care Testing Detection of Foodborne Pathogenic Bacteria To Defend Food and Agricultural Product Safety.
    Gu R; Duan Y; Li Y; Luo Z
    J Agric Food Chem; 2023 Jul; 71(29):10982-10988. PubMed ID: 37432923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in rapid detection methods for foodborne pathogens.
    Zhao X; Lin CW; Wang J; Oh DH
    J Microbiol Biotechnol; 2014 Mar; 24(3):297-312. PubMed ID: 24375418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Scenario of Pathogen Detection Techniques in Agro-Food Sector.
    Nehra M; Kumar V; Kumar R; Dilbaghi N; Kumar S
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Hyperspectral Imaging as a Nondestructive Technique for Foodborne Pathogen Detection and Characterization.
    Bonah E; Huang X; Aheto JH; Osae R
    Foodborne Pathog Dis; 2019 Oct; 16(10):712-722. PubMed ID: 31305129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens.
    Kumar H; Kuča K; Bhatia SK; Saini K; Kaushal A; Verma R; Bhalla TC; Kumar D
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32244581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiological safety evaluations and recommendations on sprouted seeds. National Advisory Committee on Microbiological Criteria for Foods.
    Int J Food Microbiol; 1999 Nov; 52(3):123-53. PubMed ID: 10733245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical Value of Food Pathogen Traceability through Building a Whole-Genome Sequencing Network and Database.
    Allard MW; Strain E; Melka D; Bunning K; Musser SM; Brown EW; Timme R
    J Clin Microbiol; 2016 Aug; 54(8):1975-83. PubMed ID: 27008877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuts and Grains: Microbiology and Preharvest Contamination Risks.
    Brar PK; Danyluk MD
    Microbiol Spectr; 2018 Apr; 6(2):. PubMed ID: 29701166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developments in Micro- and Nanotechnology for Foodborne Pathogen Detection.
    Carlson K; Misra M; Mohanty S
    Foodborne Pathog Dis; 2018 Jan; 15(1):16-25. PubMed ID: 29106297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations of Possible Multistate Outbreaks of Salmonella, Shiga Toxin-Producing Escherichia coli, and Listeria monocytogenes Infections - United States, 2016.
    Marshall KE; Nguyen TA; Ablan M; Nichols MC; Robyn MP; Sundararaman P; Whitlock L; Wise ME; Jhung MA
    MMWR Surveill Summ; 2020 Nov; 69(6):1-14. PubMed ID: 33180756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety.
    Gao R; Liu X; Xiong Z; Wang G; Ai L
    Food Res Int; 2024 Oct; 193():114767. PubMed ID: 39160035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.
    Kant K; Shahbazi MA; Dave VP; Ngo TA; Chidambara VA; Than LQ; Bang DD; Wolff A
    Biotechnol Adv; 2018; 36(4):1003-1024. PubMed ID: 29534915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning-enabled colorimetric sensors for foodborne pathogen detection.
    Holliday EG; Zhang B
    Adv Food Nutr Res; 2024; 111():179-213. PubMed ID: 39103213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiological Safety of Dried Spices.
    Gurtler JB; Keller SE
    Annu Rev Food Sci Technol; 2019 Mar; 10():409-427. PubMed ID: 30908948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiological food safety issues in Brazil: bacterial pathogens.
    Gomes BC; Franco BD; De Martinis EC
    Foodborne Pathog Dis; 2013 Mar; 10(3):197-205. PubMed ID: 23489044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety.
    Mangal M; Bansal S; Sharma SK; Gupta RK
    Crit Rev Food Sci Nutr; 2016 Jul; 56(9):1568-84. PubMed ID: 25830555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From hazard analysis to risk control using rapid methods in microbiology: A practical approach for the food industry.
    Ripolles-Avila C; Martínez-Garcia M; Capellas M; Yuste J; Fung DYC; Rodríguez-Jerez JJ
    Compr Rev Food Sci Food Saf; 2020 Jul; 19(4):1877-1907. PubMed ID: 33337076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential capability of social media as a component of food safety and food terrorism surveillance systems.
    Newkirk RW; Bender JB; Hedberg CW
    Foodborne Pathog Dis; 2012 Feb; 9(2):120-4. PubMed ID: 22217109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid detection, characterization, and enumeration of foodborne pathogens.
    Hoorfar J
    APMIS Suppl; 2011 Nov; (133):1-24. PubMed ID: 22250747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.