BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27296777)

  • 1. Toluidine blue O is a potent inhibitor of human cholinesterases.
    Biberoglu K; Tek MY; Ghasemi ST; Tacal O
    Arch Biochem Biophys; 2016 Aug; 604():57-62. PubMed ID: 27296777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by methylene violet 3RAX.
    Onder S; Biberoglu K; Tacal O
    Chem Biol Interact; 2019 Dec; 314():108845. PubMed ID: 31593690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of cholinesterases by safranin O: Integration of inhibition kinetics with molecular docking simulations.
    Onder S; Sari S; Tacal O
    Arch Biochem Biophys; 2021 Feb; 698():108728. PubMed ID: 33345803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases.
    Saxena A; Fedorko JM; Vinayaka CR; Medhekar R; Radić Z; Taylor P; Lockridge O; Doctor BP
    Eur J Biochem; 2003 Nov; 270(22):4447-58. PubMed ID: 14622273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of binding points of methylene blue and cationic phenoxazine dyes on human butyrylcholinesterase.
    Sezgin Z; Biberoglu K; Chupakhin V; Makhaeva GF; Tacal O
    Arch Biochem Biophys; 2013 Apr; 532(1):32-8. PubMed ID: 23353050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase.
    Saxena A; Redman AM; Jiang X; Lockridge O; Doctor BP
    Chem Biol Interact; 1999 May; 119-120():61-9. PubMed ID: 10421439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon.
    Amitai G; Moorad D; Adani R; Doctor BP
    Biochem Pharmacol; 1998 Aug; 56(3):293-9. PubMed ID: 9744565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; Corrêa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site.
    Hadda TB; Talhi O; Silva ASM; Senol FS; Orhan IE; Rauf A; Mabkhot YN; Bachari K; Warad I; Farghaly TA; Althagafi II; Mubarak MS
    Mini Rev Med Chem; 2018; 18(8):711-716. PubMed ID: 28714400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases.
    Jung HA; Ali MY; Jung HJ; Jeong HO; Chung HY; Choi JS
    J Ethnopharmacol; 2016 Sep; 191():152-160. PubMed ID: 27321278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exploration of thienothiazines as selective butyrylcholinesterase inhibitors.
    Karlsson D; Fallarero A; Brunhofer G; Mayer C; Prakash O; Mohan CG; Vuorela P; Erker T
    Eur J Pharm Sci; 2012 Aug; 47(1):190-205. PubMed ID: 22683890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.
    Hameed A; Zehra ST; Shah SJ; Khan KM; Alharthy RD; Furtmann N; Bajorath J; Tahir MN; Iqbal J
    Chem Biol Drug Des; 2015 Nov; 86(5):1115-20. PubMed ID: 25951978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones.
    Shah MS; Khan SU; Ejaz SA; Afridi S; Rizvi SUF; Najam-Ul-Haq M; Iqbal J
    Biochem Biophys Res Commun; 2017 Jan; 482(4):615-624. PubMed ID: 27865835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer's disease.
    Tasso B; Catto M; Nicolotti O; Novelli F; Tonelli M; Giangreco I; Pisani L; Sparatore A; Boido V; Carotti A; Sparatore F
    Eur J Med Chem; 2011 Jun; 46(6):2170-84. PubMed ID: 21459491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of novel multifunctional agents based on conjugates of γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer's disease.
    Makhaeva GF; Shevtsova EF; Boltneva NP; Lushchekina SV; Kovaleva NV; Rudakova EV; Bachurin SO; Richardson RJ
    Chem Biol Interact; 2019 Aug; 308():224-234. PubMed ID: 31100279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-D-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors.
    Bhakta HK; Park CH; Yokozawa T; Min BS; Jung HA; Choi JS
    Arch Pharm Res; 2016 Jun; 39(6):794-805. PubMed ID: 27106028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel multi-targeted agents for Alzheimer's disease: Synthesis, biological evaluation, and molecular modeling of novel 2-[4-(4-substitutedpiperazin-1-yl)phenyl]benzimidazoles.
    Ozadali-Sari K; Tüylü Küçükkılınç T; Ayazgok B; Balkan A; Unsal-Tan O
    Bioorg Chem; 2017 Jun; 72():208-214. PubMed ID: 28478328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible inhibition of acetylcholinesterase and butyrylcholinesterase by 4,4'-bipyridine and by a coumarin derivative.
    Simeon-Rudolf V; Kovarik Z; Radić Z; Reiner E
    Chem Biol Interact; 1999 May; 119-120():119-28. PubMed ID: 10421445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjugates of γ-Carbolines and Phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer Disease.
    Makhaeva GF; Lushchekina SV; Boltneva NP; Sokolov VB; Grigoriev VV; Serebryakova OG; Vikhareva EA; Aksinenko AY; Barreto GE; Aliev G; Bachurin SO
    Sci Rep; 2015 Aug; 5():13164. PubMed ID: 26281952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of Phe329 in binding of cationic triarylmethane dyes to human butyrylcholinesterase.
    Biberoglu K; Tacal Ö; Akbulut H
    Arch Biochem Biophys; 2011 Jul; 511(1-2):64-8. PubMed ID: 21530486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.