BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 27297468)

  • 1. Coevolution between Stop Codon Usage and Release Factors in Bacterial Species.
    Wei Y; Wang J; Xia X
    Mol Biol Evol; 2016 Sep; 33(9):2357-67. PubMed ID: 27297468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons.
    Ito K; Uno M; Nakamura Y
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):8165-9. PubMed ID: 9653158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of +4U as an Extended Translation Termination Signal in Bacteria.
    Wei Y; Xia X
    Genetics; 2017 Feb; 205(2):539-549. PubMed ID: 27903612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. R213I mutation in release factor 2 (RF2) is one step forward for engineering an omnipotent release factor in bacteria
    Korkmaz G; Sanyal S
    J Biol Chem; 2017 Sep; 292(36):15134-15142. PubMed ID: 28743745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal protein L11 mutations in two functional domains equally affect release factors 1 and 2 activity.
    Sato H; Ito K; Nakamura Y
    Mol Microbiol; 2006 Apr; 60(1):108-20. PubMed ID: 16556224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of translation termination in E. coli.
    Baggett NE; Zhang Y; Gross CA
    PLoS Genet; 2017 Mar; 13(3):e1006676. PubMed ID: 28301469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amber (UAG) suppressors affected in UGA/UAA-specific polypeptide release factor 2 of bacteria: genetic prediction of initial binding to ribosome preceding stop codon recognition.
    Yoshimura K; Ito K; Nakamura Y
    Genes Cells; 1999 May; 4(5):253-66. PubMed ID: 10421836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of peptide chain release factor 2 requires high-efficiency frameshift.
    Craigen WJ; Caskey CT
    Nature; 1986 Jul 17-23; 322(6076):273-5. PubMed ID: 3736654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli.
    Mora L; Zavialov A; Ehrenberg M; Buckingham RH
    Mol Microbiol; 2003 Dec; 50(5):1467-76. PubMed ID: 14651631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of stop-codon reading on the ribosome.
    Sund J; Andér M; Aqvist J
    Nature; 2010 Jun; 465(7300):947-50. PubMed ID: 20512119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1996 Aug; 261(2):98-107. PubMed ID: 8757279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple conversion between the genes encoding bacterial class-I release factors.
    Ishikawa SA; Kamikawa R; Inagaki Y
    Sci Rep; 2015 Aug; 5():12406. PubMed ID: 26257102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1.
    Dahlgren A; Rydén-Aulin M
    Biochimie; 2000 Aug; 82(8):683-91. PubMed ID: 11018284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A direct estimation of the context effect on the efficiency of termination.
    Pavlov MY; Freistroffer DV; Dincbas V; MacDougall J; Buckingham RH; Ehrenberg M
    J Mol Biol; 1998 Dec; 284(3):579-90. PubMed ID: 9826500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of translation termination sites and release factors (RF1 and RF2) in procaryotes.
    Ozawa Y; Saito R; Washio T; Tomita M
    J Mol Evol; 2003 Jun; 56(6):665-72. PubMed ID: 12911030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in Release Factor Abundance Is Not Needed to Explain Trends in Bacterial Stop Codon Usage.
    Ho AT; Hurst LD
    Mol Biol Evol; 2022 Jan; 39(1):. PubMed ID: 34751397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites.
    Johnson DB; Xu J; Shen Z; Takimoto JK; Schultz MD; Schmitz RJ; Xiang Z; Ecker JR; Briggs SP; Wang L
    Nat Chem Biol; 2011 Sep; 7(11):779-86. PubMed ID: 21926996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution and diversification of the organellar release factor family.
    Duarte I; Nabuurs SB; Magno R; Huynen M
    Mol Biol Evol; 2012 Nov; 29(11):3497-512. PubMed ID: 22688947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional interaction between tRNA2Gly2 at the ribosomal P-site and RF1 during termination at UAG.
    Zhang S; Rydén-Aulin M; Isaksson LA
    J Mol Biol; 1998 Dec; 284(5):1243-6. PubMed ID: 9878344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ribosome release in regulation of tna operon expression in Escherichia coli.
    Konan KV; Yanofsky C
    J Bacteriol; 1999 Mar; 181(5):1530-6. PubMed ID: 10049385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.