BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 27297468)

  • 21. Structural Basis for Translation Termination on a Pseudouridylated Stop Codon.
    Svidritskiy E; Madireddy R; Korostelev AA
    J Mol Biol; 2016 May; 428(10 Pt B):2228-36. PubMed ID: 27107638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo.
    Mora L; Heurgué-Hamard V; de Zamaroczy M; Kervestin S; Buckingham RH
    J Biol Chem; 2007 Dec; 282(49):35638-45. PubMed ID: 17932046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic insights into the alternative translation termination by ArfA and RF2.
    Ma C; Kurita D; Li N; Chen Y; Himeno H; Gao N
    Nature; 2017 Jan; 541(7638):550-553. PubMed ID: 27906160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular determinants of release factor 2 for ArfA-mediated ribosome rescue.
    Kurita D; Abo T; Himeno H
    J Biol Chem; 2020 Sep; 295(38):13326-13337. PubMed ID: 32727848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomic mutagenesis of stop codon nucleotides reveals the chemical prerequisites for release factor-mediated peptide release.
    Hoernes TP; Clementi N; Juen MA; Shi X; Faserl K; Willi J; Gasser C; Kreutz C; Joseph S; Lindner H; Hüttenhofer A; Erlacher MD
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E382-E389. PubMed ID: 29298914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic and kinetic insights into stop codon recognition by release factor 1.
    Trappl K; Mathew MA; Joseph S
    PLoS One; 2014; 9(4):e94058. PubMed ID: 24699820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals.
    Poole ES; Major LL; Mannering SA; Tate WP
    Nucleic Acids Res; 1998 Feb; 26(4):954-60. PubMed ID: 9461453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A tripeptide 'anticodon' deciphers stop codons in messenger RNA.
    Ito K; Uno M; Nakamura Y
    Nature; 2000 Feb; 403(6770):680-4. PubMed ID: 10688208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid and precise mapping of the Escherichia coli release factor genes by two physical approaches.
    Lee CC; Kohara Y; Akiyama K; Smith CL; Craigen WJ; Caskey CT
    J Bacteriol; 1988 Oct; 170(10):4537-41. PubMed ID: 3049538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of Translation Termination: RF1 Dissociation Follows Dissociation of RF3 from the Ribosome.
    Shi X; Joseph S
    Biochemistry; 2016 Nov; 55(45):6344-6354. PubMed ID: 27779391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of release factor context at UAA codons in Escherichia coli.
    Martin R; Weiner M; Gallant J
    J Bacteriol; 1988 Oct; 170(10):4714-7. PubMed ID: 3049546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Common and specific amino acid residues in the prokaryotic polypeptide release factors RF1 and RF2: possible functional implications.
    Oparina NJ; Kalinina OV; Gelfand MS; Kisselev LL
    Nucleic Acids Res; 2005; 33(16):5226-34. PubMed ID: 16162810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of a human translation termination complex.
    Matheisl S; Berninghausen O; Becker T; Beckmann R
    Nucleic Acids Res; 2015 Oct; 43(18):8615-26. PubMed ID: 26384426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in peptide chain termination.
    Craigen WJ; Lee CC; Caskey CT
    Mol Microbiol; 1990 Jun; 4(6):861-5. PubMed ID: 2215213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis for ArfA-RF2-mediated translation termination on mRNAs lacking stop codons.
    Huter P; Müller C; Beckert B; Arenz S; Berninghausen O; Beckmann R; Wilson DN
    Nature; 2017 Jan; 541(7638):546-549. PubMed ID: 27906161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The accuracy of codon recognition by polypeptide release factors.
    Freistroffer DV; Kwiatkowski M; Buckingham RH; Ehrenberg M
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2046-51. PubMed ID: 10681447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The regulatory TnaC nascent peptide preferentially inhibits release factor 2-mediated hydrolysis of peptidyl-tRNA.
    Emmanuel JS; Sengupta A; Gordon ER; Noble JT; Cruz-Vera LR
    J Biol Chem; 2019 Dec; 294(50):19224-19235. PubMed ID: 31712310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular recognition and catalysis in translation termination complexes.
    Klaholz BP
    Trends Biochem Sci; 2011 May; 36(5):282-92. PubMed ID: 21420300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-Based Energetics of Stop Codon Recognition by Eukaryotic Release Factor.
    Kumar A; Basu D; Satpati P
    J Chem Inf Model; 2017 Sep; 57(9):2321-2328. PubMed ID: 28825483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination.
    Ejby M; Sørensen MA; Pedersen S
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19410-5. PubMed ID: 18032607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.