These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27297547)

  • 1. Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin.
    Wu J; Zhang X; Dong M; Zhou J
    J Biotechnol; 2016 Aug; 231():183-192. PubMed ID: 27297547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering.
    Guo L; Chen X; Li LN; Tang W; Pan YT; Kong JQ
    Microb Cell Fact; 2016 Feb; 15():27. PubMed ID: 26846670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy.
    Wu J; Du G; Zhou J; Chen J
    Metab Eng; 2013 Mar; 16():48-55. PubMed ID: 23246524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.
    Cao W; Ma W; Wang X; Zhang B; Cao X; Chen K; Li Y; Ouyang P
    Sci Rep; 2016 Sep; 6():32640. PubMed ID: 27586788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli.
    Wu J; Zhou T; Du G; Zhou J; Chen J
    PLoS One; 2014; 9(7):e101492. PubMed ID: 24988485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of pinocembrin from glucose using engineered escherichia coli.
    Kim BG; Lee H; Ahn JH
    J Microbiol Biotechnol; 2014 Nov; 24(11):1536-41. PubMed ID: 25085569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy.
    Wu J; Zhang X; Zhou J; Dong M
    Bioresour Technol; 2016 Oct; 218():999-1007. PubMed ID: 27450982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of Chalcone Synthase Activity and High-Efficiency Fermentative Production of (2
    Tong Y; Li N; Zhou S; Zhang L; Xu S; Zhou J
    ACS Synth Biol; 2024 May; 13(5):1454-1466. PubMed ID: 38662928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster.
    Miyahisa I; Kaneko M; Funa N; Kawasaki H; Kojima H; Ohnishi Y; Horinouchi S
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):498-504. PubMed ID: 15770480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production.
    Tao S; Qian Y; Wang X; Cao W; Ma W; Chen K; Ouyang P
    Microb Cell Fact; 2018 Sep; 17(1):147. PubMed ID: 30227873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis.
    Cao W; Ma W; Zhang B; Wang X; Chen K; Li Y; Ouyang P
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):557-66. PubMed ID: 26733394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy.
    Zhou S; Lyu Y; Li H; Koffas MAG; Zhou J
    Biotechnol Bioeng; 2019 Jun; 116(6):1392-1404. PubMed ID: 30684358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine.
    Wu J; Liu P; Fan Y; Bao H; Du G; Zhou J; Chen J
    J Biotechnol; 2013 Sep; 167(4):404-11. PubMed ID: 23916948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Level
    Yue M; Liu M; Gao S; Ren X; Zhou S; Rao Y; Zhou J
    J Agric Food Chem; 2024 Feb; 72(8):4292-4300. PubMed ID: 38364826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering
    Dunstan MS; Robinson CJ; Jervis AJ; Yan C; Carbonell P; Hollywood KA; Currin A; Swainston N; Feuvre RL; Micklefield J; Faulon JL; Breitling R; Turner N; Takano E; Scrutton NS
    Synth Biol (Oxf); 2020; 5(1):ysaa012. PubMed ID: 33195815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli.
    Wu J; Yu O; Du G; Zhou J; Chen J
    Appl Environ Microbiol; 2014 Dec; 80(23):7283-92. PubMed ID: 25239896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.
    Wu J; Zhang X; Zhu Y; Tan Q; He J; Dong M
    Sci Rep; 2017 May; 7(1):1459. PubMed ID: 28469159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.