BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27297675)

  • 1. Dibenzylbutyrolactone Lignans - A Review of Their Structural Diversity, Biosynthesis, Occurrence, Identification and Importance.
    Solyomváry A; Beni S; Boldizsar I
    Mini Rev Med Chem; 2017; 17(12):1053-1074. PubMed ID: 27297675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Recent progresses in studies on bioactive lignans from plants].
    Zhang GL; Li N; Lin LL; Wang MW
    Zhongguo Zhong Yao Za Zhi; 2007 Oct; 32(20):2089-94. PubMed ID: 18306734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of (-)-arctigenin derivatives and their anticancer activity.
    Gui-Rong C; Li-Ping C; De-Qiang D; Ting-Guo K; Hong-Fu L; Fu-Rui L; Ning J
    Nat Prod Res; 2012; 26(2):177-81. PubMed ID: 21867457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignans and Their Derivatives from Plants as Antivirals.
    Cui Q; Du R; Liu M; Rong L
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31906391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naturally occurring furofuran lignans: structural diversity and biological activities.
    Xu WH; Zhao P; Wang M; Liang Q
    Nat Prod Res; 2019 May; 33(9):1357-1373. PubMed ID: 29768037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of lignan biosynthesis in Forsythia cell culture.
    Kim HJ; Ono E; Morimoto K; Yamagaki T; Okazawa A; Kobayashi A; Satake H
    Plant Cell Physiol; 2009 Dec; 50(12):2200-9. PubMed ID: 19887541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, antitumoral and antiviral evaluation of halo- and demethyl-yatein derivatives.
    Medarde M; Peláez-Lamamié de Clairac R; López JL; Grávalos DG; San Feliciano S
    Arch Pharm (Weinheim); 1995 Sep; 328(9):640-4. PubMed ID: 7487420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The antitumor lignan Nortrachelogenin sensitizes prostate cancer cells to TRAIL-induced cell death by inhibition of the Akt pathway and growth factor signaling.
    Peuhu E; Paul P; Remes M; Holmbom T; Eklund P; Sjöholm R; Eriksson JE
    Biochem Pharmacol; 2013 Sep; 86(5):571-83. PubMed ID: 23747345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of gradient-enhanced nuclear Overhauser effect spectroscopy GOESY) in the structure elucidation of plant secondary metabolites.
    Sarker SD; Latif Z; Nash RJ
    Phytochem Anal; 2001; 12(1):23-7. PubMed ID: 11704958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical carboxyarylation approach to lignans. Total synthesis of (-)-arctigenin, (-)-matairesinol, and related natural products.
    Fischer J; Reynolds AJ; Sharp LA; Sherburn MS
    Org Lett; 2004 Apr; 6(9):1345-8. PubMed ID: 15101738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignan Dimers from Forsythia viridissima Roots and Their Antiviral Effects.
    Huh J; Song JH; Kim SR; Cho HM; Ko HJ; Yang H; Sung SH
    J Nat Prod; 2019 Feb; 82(2):232-238. PubMed ID: 30676026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and Anti-Proliferative Evaluation of Arctigenin Analogues with C-9' Derivatisation.
    Paulin EK; Leung E; Pilkington LI; Barker D
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance liquid chromatography/mass spectrometric identification of dibenzylbutyrolactone-type lignans: insights into electrospray ionization tandem mass spectrometric fragmentation of lign-7-eno-9,9'-lactones and application to the lignans of Linum usitatissimum L. (Common Flax).
    Schmidt TJ; Alfermann AW; Fuss E
    Rapid Commun Mass Spectrom; 2008 Nov; 22(22):3642-50. PubMed ID: 18946865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro metabolism study of the promising anticancer agent the lignan (-)-grandisin.
    Messiano GB; Santos RA; Ferreira Lde S; Simões RA; Jabor VA; Kato MJ; Lopes NP; Pupo MT; de Oliveira AR
    J Pharm Biomed Anal; 2013 Jan; 72():240-4. PubMed ID: 22995290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arctigenin Attenuates Learning and Memory Deficits through PI3k/Akt/GSK-3β Pathway Reducing Tau Hyperphosphorylation in Aβ-Induced AD Mice.
    Qi Y; Dou DQ; Jiang H; Zhang BB; Qin WY; Kang K; Zhang N; Jia D
    Planta Med; 2017 Jan; 83(1-02):51-56. PubMed ID: 27224270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-hydrolyzed Fruit of Jurinea mollis: a Rich Source of (-)-(8R,8'R)-Arctigenin.
    Könye R; Ress ÁE; Sólyomváry A; Tóth G; Darcsi A; Komjáti B; Horvith P; Noszál B; Moinir-Perl I; Béni S; Boldizsár I
    Nat Prod Commun; 2016 Oct; 11(10):1459-1462. PubMed ID: 30549599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis is the dominating in vivo metabolism pathway for arctigenin: identification of novel metabolites of arctigenin by LC/MS/MS after oral administration in rats.
    Gao Q; Zhang Y; Wo S; Zuo Z
    Planta Med; 2013 Apr; 79(6):471-9. PubMed ID: 23519790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticancer lignans--from discovery to biotechnology.
    Ionkova I
    Mini Rev Med Chem; 2011 Sep; 11(10):843-56. PubMed ID: 21762103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum yields of dibenzylbutyrolactone-type lignans from Cynareae fruits, during their ripening, germination and enzymatic hydrolysis processes, determined by on-line chromatographic methods.
    Szokol-Borsodi L; Sólyomváry A; Molnár-Perl I; Boldizsár I
    Phytochem Anal; 2012; 23(6):598-603. PubMed ID: 22396124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant-derived lignans as potential antiviral agents: a systematic review.
    Xu XY; Wang DY; Li YP; Deyrup ST; Zhang HJ
    Phytochem Rev; 2022; 21(1):239-289. PubMed ID: 34093097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.