BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27297692)

  • 1. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism.
    Averous J; Lambert-Langlais S; Mesclon F; Carraro V; Parry L; Jousse C; Bruhat A; Maurin AC; Pierre P; Proud CG; Fafournoux P
    Sci Rep; 2016 Jun; 6():27698. PubMed ID: 27297692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver.
    Nikonorova IA; Mirek ET; Signore CC; Goudie MP; Wek RC; Anthony TG
    J Biol Chem; 2018 Apr; 293(14):5005-5015. PubMed ID: 29449374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GCN2- and eIF2α-phosphorylation-independent, but ATF4-dependent, induction of CARE-containing genes in methionine-deficient cells.
    Mazor KM; Stipanuk MH
    Amino Acids; 2016 Dec; 48(12):2831-2842. PubMed ID: 27613409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cell-based chemical-genetic screen for amino acid stress response inhibitors reveals torins reverse stress kinase GCN2 signaling.
    Brüggenthies JB; Fiore A; Russier M; Bitsina C; Brötzmann J; Kordes S; Menninger S; Wolf A; Conti E; Eickhoff JE; Murray PJ
    J Biol Chem; 2022 Dec; 298(12):102629. PubMed ID: 36273589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2.
    Ye J; Palm W; Peng M; King B; Lindsten T; Li MO; Koumenis C; Thompson CB
    Genes Dev; 2015 Nov; 29(22):2331-6. PubMed ID: 26543160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase.
    Al-Baghdadi RJT; Nikonorova IA; Mirek ET; Wang Y; Park J; Belden WJ; Wek RC; Anthony TG
    Sci Rep; 2017 Apr; 7(1):1272. PubMed ID: 28455513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma.
    Wengrod J; Wang D; Weiss S; Zhong H; Osman I; Gardner LB
    Sci Signal; 2015 Mar; 8(367):ra27. PubMed ID: 25759478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4.
    Park Y; Reyna-Neyra A; Philippe L; Thoreen CC
    Cell Rep; 2017 May; 19(6):1083-1090. PubMed ID: 28494858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATF4-Mediated Upregulation of REDD1 and Sestrin2 Suppresses mTORC1 Activity during Prolonged Leucine Deprivation.
    Xu D; Dai W; Kutzler L; Lacko HA; Jefferson LS; Dennis MD; Kimball SR
    J Nutr; 2020 May; 150(5):1022-1030. PubMed ID: 31875479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amino acid sensor GCN2 suppresses terminal oligopyrimidine (TOP) mRNA translation via La-related protein 1 (LARP1).
    Farooq Z; Kusuma F; Burke P; Dufour CR; Lee D; Tabatabaei N; Toboz P; Radovani E; Greenblatt JF; Rehman J; Class J; Khoutorsky A; Fonseca BD; Richner JM; Mercier E; Bourque G; Giguère V; Subramaniam AR; Han J; Tahmasebi S
    J Biol Chem; 2022 Sep; 298(9):102277. PubMed ID: 35863436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbations in actin dynamics reconfigure protein complexes that modulate GCN2 activity and promote an eIF2 response.
    Silva RC; Sattlegger E; Castilho BA
    J Cell Sci; 2016 Dec; 129(24):4521-4533. PubMed ID: 27852836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice.
    Nikonorova IA; Al-Baghdadi RJT; Mirek ET; Wang Y; Goudie MP; Wetstein BB; Dixon JL; Hine C; Mitchell JR; Adams CM; Wek RC; Anthony TG
    J Biol Chem; 2017 Apr; 292(16):6786-6798. PubMed ID: 28242759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance exercise enhances long-term mTORC1 sensitivity to leucine.
    D'Hulst G; Masschelein E; De Bock K
    Mol Metab; 2022 Dec; 66():101615. PubMed ID: 36252815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GZD824 Inhibits GCN2 and Sensitizes Cancer Cells to Amino Acid Starvation Stress.
    Kato Y; Kunimasa K; Takahashi M; Harada A; Nagasawa I; Osawa M; Sugimoto Y; Tomida A
    Mol Pharmacol; 2020 Dec; 98(6):669-676. PubMed ID: 33033108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid.
    Guo F; Cavener DR
    Cell Metab; 2007 Feb; 5(2):103-14. PubMed ID: 17276353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice.
    Zhang P; McGrath BC; Reinert J; Olsen DS; Lei L; Gill S; Wek SA; Vattem KM; Wek RC; Kimball SR; Jefferson LS; Cavener DR
    Mol Cell Biol; 2002 Oct; 22(19):6681-8. PubMed ID: 12215525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells.
    Darnell AM; Subramaniam AR; O'Shea EK
    Mol Cell; 2018 Jul; 71(2):229-243.e11. PubMed ID: 30029003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Gcn2-eIF2α pathway connects iron and amino acid homeostasis in
    Caballero-Molada M; Planes MD; Benlloch H; Atares S; Naranjo MA; Serrano R
    Biochem J; 2018 Apr; 475(8):1523-1534. PubMed ID: 29626156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid availability controls TRB3 transcription in liver through the GCN2/eIF2α/ATF4 pathway.
    Carraro V; Maurin AC; Lambert-Langlais S; Averous J; Chaveroux C; Parry L; Jousse C; Ord D; Ord T; Fafournoux P; Bruhat A
    PLoS One; 2010 Dec; 5(12):e15716. PubMed ID: 21203563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic removal of eIF2α kinase PERK in mice enables hippocampal L-LTP independent of mTORC1 activity.
    Zimmermann HR; Yang W; Beckelman BC; Kasica NP; Zhou X; Galli LD; Ryazanov AG; Ma T
    J Neurochem; 2018 Jul; 146(2):133-144. PubMed ID: 29337352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.