These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 27297692)
1. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Averous J; Lambert-Langlais S; Mesclon F; Carraro V; Parry L; Jousse C; Bruhat A; Maurin AC; Pierre P; Proud CG; Fafournoux P Sci Rep; 2016 Jun; 6():27698. PubMed ID: 27297692 [TBL] [Abstract][Full Text] [Related]
2. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver. Nikonorova IA; Mirek ET; Signore CC; Goudie MP; Wek RC; Anthony TG J Biol Chem; 2018 Apr; 293(14):5005-5015. PubMed ID: 29449374 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of GCN2 by mTOR confers adaptation to conditions of hyper-mTOR activation under stress. Darawshi O; Yassin O; Shmuel M; Wek RC; Mahdizadeh SJ; Eriksson LA; Hatzoglou M; Tirosh B J Biol Chem; 2024 Aug; 300(8):107575. PubMed ID: 39013537 [TBL] [Abstract][Full Text] [Related]
4. GCN2- and eIF2α-phosphorylation-independent, but ATF4-dependent, induction of CARE-containing genes in methionine-deficient cells. Mazor KM; Stipanuk MH Amino Acids; 2016 Dec; 48(12):2831-2842. PubMed ID: 27613409 [TBL] [Abstract][Full Text] [Related]
6. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Ye J; Palm W; Peng M; King B; Lindsten T; Li MO; Koumenis C; Thompson CB Genes Dev; 2015 Nov; 29(22):2331-6. PubMed ID: 26543160 [TBL] [Abstract][Full Text] [Related]
7. Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase. Al-Baghdadi RJT; Nikonorova IA; Mirek ET; Wang Y; Park J; Belden WJ; Wek RC; Anthony TG Sci Rep; 2017 Apr; 7(1):1272. PubMed ID: 28455513 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Wengrod J; Wang D; Weiss S; Zhong H; Osman I; Gardner LB Sci Signal; 2015 Mar; 8(367):ra27. PubMed ID: 25759478 [TBL] [Abstract][Full Text] [Related]
9. mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4. Park Y; Reyna-Neyra A; Philippe L; Thoreen CC Cell Rep; 2017 May; 19(6):1083-1090. PubMed ID: 28494858 [TBL] [Abstract][Full Text] [Related]
10. ATF4-Mediated Upregulation of REDD1 and Sestrin2 Suppresses mTORC1 Activity during Prolonged Leucine Deprivation. Xu D; Dai W; Kutzler L; Lacko HA; Jefferson LS; Dennis MD; Kimball SR J Nutr; 2020 May; 150(5):1022-1030. PubMed ID: 31875479 [TBL] [Abstract][Full Text] [Related]
11. The amino acid sensor GCN2 suppresses terminal oligopyrimidine (TOP) mRNA translation via La-related protein 1 (LARP1). Farooq Z; Kusuma F; Burke P; Dufour CR; Lee D; Tabatabaei N; Toboz P; Radovani E; Greenblatt JF; Rehman J; Class J; Khoutorsky A; Fonseca BD; Richner JM; Mercier E; Bourque G; Giguère V; Subramaniam AR; Han J; Tahmasebi S J Biol Chem; 2022 Sep; 298(9):102277. PubMed ID: 35863436 [TBL] [Abstract][Full Text] [Related]
12. Perturbations in actin dynamics reconfigure protein complexes that modulate GCN2 activity and promote an eIF2 response. Silva RC; Sattlegger E; Castilho BA J Cell Sci; 2016 Dec; 129(24):4521-4533. PubMed ID: 27852836 [TBL] [Abstract][Full Text] [Related]
13. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice. Nikonorova IA; Al-Baghdadi RJT; Mirek ET; Wang Y; Goudie MP; Wetstein BB; Dixon JL; Hine C; Mitchell JR; Adams CM; Wek RC; Anthony TG J Biol Chem; 2017 Apr; 292(16):6786-6798. PubMed ID: 28242759 [TBL] [Abstract][Full Text] [Related]
14. Resistance exercise enhances long-term mTORC1 sensitivity to leucine. D'Hulst G; Masschelein E; De Bock K Mol Metab; 2022 Dec; 66():101615. PubMed ID: 36252815 [TBL] [Abstract][Full Text] [Related]
15. GZD824 Inhibits GCN2 and Sensitizes Cancer Cells to Amino Acid Starvation Stress. Kato Y; Kunimasa K; Takahashi M; Harada A; Nagasawa I; Osawa M; Sugimoto Y; Tomida A Mol Pharmacol; 2020 Dec; 98(6):669-676. PubMed ID: 33033108 [TBL] [Abstract][Full Text] [Related]
16. The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Guo F; Cavener DR Cell Metab; 2007 Feb; 5(2):103-14. PubMed ID: 17276353 [TBL] [Abstract][Full Text] [Related]
17. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Zhang P; McGrath BC; Reinert J; Olsen DS; Lei L; Gill S; Wek SA; Vattem KM; Wek RC; Kimball SR; Jefferson LS; Cavener DR Mol Cell Biol; 2002 Oct; 22(19):6681-8. PubMed ID: 12215525 [TBL] [Abstract][Full Text] [Related]
18. Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells. Darnell AM; Subramaniam AR; O'Shea EK Mol Cell; 2018 Jul; 71(2):229-243.e11. PubMed ID: 30029003 [TBL] [Abstract][Full Text] [Related]
19. The Gcn2-eIF2α pathway connects iron and amino acid homeostasis in Caballero-Molada M; Planes MD; Benlloch H; Atares S; Naranjo MA; Serrano R Biochem J; 2018 Apr; 475(8):1523-1534. PubMed ID: 29626156 [TBL] [Abstract][Full Text] [Related]
20. Amino acid availability controls TRB3 transcription in liver through the GCN2/eIF2α/ATF4 pathway. Carraro V; Maurin AC; Lambert-Langlais S; Averous J; Chaveroux C; Parry L; Jousse C; Ord D; Ord T; Fafournoux P; Bruhat A PLoS One; 2010 Dec; 5(12):e15716. PubMed ID: 21203563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]