These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27297745)

  • 1. Smart surface-enhanced Raman scattering traceable drug delivery systems.
    Liu L; Tang Y; Dai S; Kleitz F; Qiao SZ
    Nanoscale; 2016 Jul; 8(25):12803-11. PubMed ID: 27297745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release.
    Cao H; Yang Y; Chen X; Shao Z
    Nanoscale; 2016 Mar; 8(12):6754-60. PubMed ID: 26952741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-controllable drug carrier with SERS activity for targeting cancer cells.
    Fang W; Wang Z; Zong S; Chen H; Zhu D; Zhong Y; Cui Y
    Biosens Bioelectron; 2014 Jul; 57():10-5. PubMed ID: 24525050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Janus Silver-Mesoporous Silica Nanocarriers for SERS Traceable and pH-Sensitive Drug Delivery in Cancer Therapy.
    Shao D; Zhang X; Liu W; Zhang F; Zheng X; Qiao P; Li J; Dong WF; Chen L
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4303-8. PubMed ID: 26844695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy.
    Kang B; Afifi MM; Austin LA; El-Sayed MA
    ACS Nano; 2013 Aug; 7(8):7420-7. PubMed ID: 23909658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface enhanced Raman scattering traceable and glutathione responsive nanocarrier for the intracellular drug delivery.
    Zong S; Wang Z; Chen H; Yang J; Cui Y
    Anal Chem; 2013 Feb; 85(4):2223-30. PubMed ID: 23327663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-sensitive nanocarrier based on gold/silver core-shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells.
    Chen P; Wang Z; Zong S; Zhu D; Chen H; Zhang Y; Wu L; Cui Y
    Biosens Bioelectron; 2016 Jan; 75():446-51. PubMed ID: 26360244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SERS-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells.
    Chen H; Wang Z; Zong S; Wu L; Chen P; Zhu D; Wang C; Xu S; Cui Y
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17526-33. PubMed ID: 25272041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telomerase triggered drug release using a SERS traceable nanocarrier.
    Zong S; Wang Z; Chen H; Zhu D; Chen P; Cui Y
    IEEE Trans Nanobioscience; 2014 Mar; 13(1):55-60. PubMed ID: 24594515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-mode tracking of tumor-cell-specific drug delivery using fluorescence and label-free SERS techniques.
    Yang J; Wang Z; Zong S; Chen H; Zhang R; Cui Y
    Biosens Bioelectron; 2014 Jan; 51():82-9. PubMed ID: 23939474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible triplex Ag@SiO2@mTiO2 core-shell nanoparticles for simultaneous fluorescence-SERS bimodal imaging and drug delivery.
    Wang Y; Chen L; Liu P
    Chemistry; 2012 May; 18(19):5935-43. PubMed ID: 22461327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS-active liposome@Ag/Au nanocomposite for NIR light-driven drug release.
    Zhao Y; Zhao J; Shan G; Yan D; Chen Y; Liu Y
    Colloids Surf B Biointerfaces; 2017 Jun; 154():150-159. PubMed ID: 28334692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells.
    Zhu D; Wang Z; Zong S; Chen H; Wu X; Pei Y; Chen P; Ma X; Cui Y
    Nanoscale; 2014 Jul; 6(14):8155-61. PubMed ID: 24925062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.
    Tian F; Conde J; Bao C; Chen Y; Curtin J; Cui D
    Biomaterials; 2016 Nov; 106():87-97. PubMed ID: 27552319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer.
    Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY
    Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gold nanoflower-based traceable drug delivery system for intracellular SERS imaging-guided targeted chemo-phototherapy.
    Song C; Dou Y; Yuwen L; Sun Y; Dong C; Li F; Yang Y; Wang L
    J Mater Chem B; 2018 May; 6(19):3030-3039. PubMed ID: 32254338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering.
    Xie HN; Lin Y; Mazo M; Chiappini C; Sánchez-Iglesias A; Liz-Marzán LM; Stevens MM
    Nanoscale; 2014 Nov; 6(21):12403-7. PubMed ID: 25231338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.