These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 27299377)
1. Accelerated Physical Stability Testing of Amorphous Dispersions. Mehta M; Suryanarayanan R Mol Pharm; 2016 Aug; 13(8):2661-6. PubMed ID: 27299377 [TBL] [Abstract][Full Text] [Related]
2. Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). Marsac PJ; Rumondor AC; Nivens DE; Kestur US; Stanciu L; Taylor LS J Pharm Sci; 2010 Jan; 99(1):169-85. PubMed ID: 19492305 [TBL] [Abstract][Full Text] [Related]
3. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Konno H; Taylor LS Pharm Res; 2008 Apr; 25(4):969-78. PubMed ID: 17520180 [TBL] [Abstract][Full Text] [Related]
4. Effect of Water on Molecular Mobility and Physical Stability of Amorphous Pharmaceuticals. Mehta M; Kothari K; Ragoonanan V; Suryanarayanan R Mol Pharm; 2016 Apr; 13(4):1339-46. PubMed ID: 26954586 [TBL] [Abstract][Full Text] [Related]
5. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water. Marsac PJ; Konno H; Rumondor AC; Taylor LS Pharm Res; 2008 Mar; 25(3):647-56. PubMed ID: 17846870 [TBL] [Abstract][Full Text] [Related]
6. The effect of processing on the surface physical stability of amorphous solid dispersions. Yang Z; Nollenberger K; Albers J; Moffat J; Craig D; Qi S Eur J Pharm Biopharm; 2014 Nov; 88(3):897-908. PubMed ID: 25111184 [TBL] [Abstract][Full Text] [Related]
7. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. Konno H; Taylor LS J Pharm Sci; 2006 Dec; 95(12):2692-705. PubMed ID: 16892209 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility. Bhardwaj SP; Arora KK; Kwong E; Templeton A; Clas SD; Suryanarayanan R Mol Pharm; 2014 Nov; 11(11):4228-37. PubMed ID: 25325389 [TBL] [Abstract][Full Text] [Related]
9. Screen for Inhibitors of Crystal Growth to Identify Desirable Carriers for Amorphous Solid Dispersions Containing Felodipine. Fu J; Cui L; Yang C; Xiong H; Ren G; Ma X; Jing Q; Ren F AAPS PharmSciTech; 2018 Apr; 19(3):1231-1242. PubMed ID: 29302871 [TBL] [Abstract][Full Text] [Related]
10. Acceleration of Crystal Growth of Amorphous Griseofulvin by Low-Concentration Poly(ethylene oxide): Aspects of Crystallization Kinetics and Molecular Mobility. Shi Q; Zhang C; Su Y; Zhang J; Zhou D; Cai T Mol Pharm; 2017 Jul; 14(7):2262-2272. PubMed ID: 28548840 [TBL] [Abstract][Full Text] [Related]
11. The role of polymer concentration on the molecular mobility and physical stability of nifedipine solid dispersions. Kothari K; Ragoonanan V; Suryanarayanan R Mol Pharm; 2015 May; 12(5):1477-84. PubMed ID: 25894099 [TBL] [Abstract][Full Text] [Related]
12. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Rumondor AC; Marsac PJ; Stanford LA; Taylor LS Mol Pharm; 2009; 6(5):1492-505. PubMed ID: 19634917 [TBL] [Abstract][Full Text] [Related]
13. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. Aso Y; Yoshioka S; Kojima S J Pharm Sci; 2004 Feb; 93(2):384-91. PubMed ID: 14705195 [TBL] [Abstract][Full Text] [Related]
14. Preparation of a solid dispersion of felodipine using a solvent wetting method. Kim EJ; Chun MK; Jang JS; Lee IH; Lee KR; Choi HK Eur J Pharm Biopharm; 2006 Oct; 64(2):200-5. PubMed ID: 16750355 [TBL] [Abstract][Full Text] [Related]
15. Role of the Strength of Drug-Polymer Interactions on the Molecular Mobility and Crystallization Inhibition in Ketoconazole Solid Dispersions. Mistry P; Mohapatra S; Gopinath T; Vogt FG; Suryanarayanan R Mol Pharm; 2015 Sep; 12(9):3339-50. PubMed ID: 26070543 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine. Mahmah O; Tabbakh R; Kelly A; Paradkar A J Pharm Pharmacol; 2014 Feb; 66(2):275-84. PubMed ID: 24433426 [TBL] [Abstract][Full Text] [Related]
17. Using Flory-Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying. Tian Y; Caron V; Jones DS; Healy AM; Andrews GP J Pharm Pharmacol; 2014 Feb; 66(2):256-74. PubMed ID: 24192445 [TBL] [Abstract][Full Text] [Related]
18. Molecular motions in sucrose-PVP and sucrose-sorbitol dispersions: I. Implications of global and local mobility on stability. Bhattacharya S; Suryanarayanan R Pharm Res; 2011 Sep; 28(9):2191-203. PubMed ID: 21499981 [TBL] [Abstract][Full Text] [Related]
19. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Konno H; Handa T; Alonzo DE; Taylor LS Eur J Pharm Biopharm; 2008 Oct; 70(2):493-9. PubMed ID: 18577451 [TBL] [Abstract][Full Text] [Related]
20. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions. Sun M; Wu C; Fu Q; Di D; Kuang X; Wang C; He Z; Wang J; Sun J Int J Pharm; 2016 Apr; 503(1-2):238-46. PubMed ID: 26869398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]