These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27299473)

  • 1. pH-Regulated Nonelectrogenic Anion Transport by Phenylthiosemicarbazones.
    Howe EN; Busschaert N; Wu X; Berry SN; Ho J; Light ME; Czech DD; Klein HA; Kitchen JA; Gale PA
    J Am Chem Soc; 2016 Jul; 138(26):8301-8. PubMed ID: 27299473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halide-selective, proton-coupled anion transport by phenylthiosemicarbazones.
    Howe ENW; Chang VT; Wu X; Fares M; Lewis W; Macreadie LK; Gale PA
    Biochim Biophys Acta Biomembr; 2022 Feb; 1864(2):183828. PubMed ID: 34861222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making a match for Valinomycin: steroidal scaffolds in the design of electroneutral, electrogenic anion carriers.
    Valkenier H; Davis AP
    Acc Chem Res; 2013 Dec; 46(12):2898-909. PubMed ID: 23514113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester.
    Antonenko YN; Rokitskaya TI; Huczyński A
    Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular Transmembrane Anion Transport: New Assays and Insights.
    Wu X; Howe ENW; Gale PA
    Acc Chem Res; 2018 Aug; 51(8):1870-1879. PubMed ID: 30063324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anion transport in heart.
    Hume JR; Duan D; Collier ML; Yamazaki J; Horowitz B
    Physiol Rev; 2000 Jan; 80(1):31-81. PubMed ID: 10617765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diphenylethylenediamine-Based Potent Anionophores: Transmembrane Chloride Ion Transport and Apoptosis Inducing Activities.
    Akhtar N; Saha A; Kumar V; Pradhan N; Panda S; Morla S; Kumar S; Manna D
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33803-33813. PubMed ID: 30221925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-Switchable HCl Transport Enabled by Lipid Headgroup-Transporter Interactions.
    Wu X; Small JR; Cataldo A; Withecombe AM; Turner P; Gale PA
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):15142-15147. PubMed ID: 31400024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane Fluoride Transport: Direct Measurement and Selectivity Studies.
    Clarke HJ; Howe EN; Wu X; Sommer F; Yano M; Light ME; Kubik S; Gale PA
    J Am Chem Soc; 2016 Dec; 138(50):16515-16522. PubMed ID: 27998094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles.
    Shiuan D; Weinstein SW
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F837-47. PubMed ID: 6093593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible solution to anion transport: powerful anionophores based on a cyclohexane scaffold.
    Cooper JA; Street ST; Davis AP
    Angew Chem Int Ed Engl; 2014 May; 53(22):5609-13. PubMed ID: 24711283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological applications of synthetic anion transporters.
    Akhtar N; Biswas O; Manna D
    Chem Commun (Camb); 2020 Nov; 56(91):14137-14153. PubMed ID: 33057487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane anion transport mediated by halogen bonding and hydrogen bonding triazole anionophores.
    Bickerton LE; Sterling AJ; Beer PD; Duarte F; Langton MJ
    Chem Sci; 2020 Apr; 11(18):4722-4729. PubMed ID: 34122927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorinated synthetic anion carriers: experimental and computational insights into transmembrane chloride transport.
    Spooner MJ; Li H; Marques I; Costa PMR; Wu X; Howe ENW; Busschaert N; Moore SJ; Light ME; Sheppard DN; Félix V; Gale PA
    Chem Sci; 2019 Feb; 10(7):1976-1985. PubMed ID: 30881627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia.
    Li H; Valkenier H; Judd LW; Brotherhood PR; Hussain S; Cooper JA; Jurček O; Sparkes HA; Sheppard DN; Davis AP
    Nat Chem; 2016 Jan; 8(1):24-32. PubMed ID: 26673261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From anion receptors to transporters.
    Gale PA
    Acc Chem Res; 2011 Mar; 44(3):216-26. PubMed ID: 21207951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Lipophilic Balance Modification in the Creation of Potent Synthetic Anionophores.
    Li Z; Chen WH
    Mini Rev Med Chem; 2017; 17(14):1398-1405. PubMed ID: 28176626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-Gated Chloride Transport by a Triazine-Based Tripodal Semicage.
    Roy A; Saha D; Mandal PS; Mukherjee A; Talukdar P
    Chemistry; 2017 Jan; 23(6):1241-1247. PubMed ID: 27862455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further characterization of the electrogenicity and pH sensitivity of the human organic anion-transporting polypeptides OATP1B1 and OATP1B3.
    Martinez-Becerra P; Briz O; Romero MR; Macias RI; Perez MJ; Sancho-Mateo C; Lostao MP; Fernandez-Abalos JM; Marin JJ
    Mol Pharmacol; 2011 Mar; 79(3):596-607. PubMed ID: 21173039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.