These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 27299802)
1. Dioxygen Binding, Activation, and Reduction to H2O by Cu Enzymes. Solomon EI Inorg Chem; 2016 Jul; 55(13):6364-75. PubMed ID: 27299802 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopic characterization and O2 reactivity of the trinuclear Cu cluster of mutants of the multicopper oxidase Fet3p. Palmer AE; Quintanar L; Severance S; Wang TP; Kosman DJ; Solomon EI Biochemistry; 2002 May; 41(20):6438-48. PubMed ID: 12009907 [TBL] [Abstract][Full Text] [Related]
3. Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond. Yoon J; Solomon EI J Am Chem Soc; 2007 Oct; 129(43):13127-36. PubMed ID: 17918839 [TBL] [Abstract][Full Text] [Related]
4. O2 reduction to H2O by the multicopper oxidases. Solomon EI; Augustine AJ; Yoon J Dalton Trans; 2008 Aug; (30):3921-32. PubMed ID: 18648693 [TBL] [Abstract][Full Text] [Related]
5. Systematic perturbation of the trinuclear copper cluster in the multicopper oxidases: the role of active site asymmetry in its reduction of O2 to H2O. Augustine AJ; Kjaergaard C; Qayyum M; Ziegler L; Kosman DJ; Hodgson KO; Hedman B; Solomon EI J Am Chem Soc; 2010 May; 132(17):6057-67. PubMed ID: 20377263 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic and kinetic studies of perturbed trinuclear copper clusters: the role of protons in reductive cleavage of the O-O bond in the multicopper oxidase Fet3p. Augustine AJ; Quintanar L; Stoj CS; Kosman DJ; Solomon EI J Am Chem Soc; 2007 Oct; 129(43):13118-26. PubMed ID: 17918838 [TBL] [Abstract][Full Text] [Related]
7. A combined quantum and molecular mechanical study of the O2 reductive cleavage in the catalytic cycle of multicopper oxidases. Rulísek L; Solomon EI; Ryde U Inorg Chem; 2005 Aug; 44(16):5612-28. PubMed ID: 16060610 [TBL] [Abstract][Full Text] [Related]
8. Modified reactivity toward O2 in first shell variants of Fet3p: geometric and electronic structure requirements for a functioning trinuclear copper cluster. Kjaergaard CH; Qayyum MF; Augustine AJ; Ziegler L; Kosman DJ; Hodgson KO; Hedman B; Solomon EI Biochemistry; 2013 May; 52(21):3702-11. PubMed ID: 23631422 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. Ferraroni M; Myasoedova NM; Schmatchenko V; Leontievsky AA; Golovleva LA; Scozzafava A; Briganti F BMC Struct Biol; 2007 Sep; 7():60. PubMed ID: 17897461 [TBL] [Abstract][Full Text] [Related]
10. Role of aspartate 94 in the decay of the peroxide intermediate in the multicopper oxidase Fet3p. Quintanar L; Stoj C; Wang TP; Kosman DJ; Solomon EI Biochemistry; 2005 Apr; 44(16):6081-91. PubMed ID: 15835897 [TBL] [Abstract][Full Text] [Related]
11. Nature of the intermediate formed in the reduction of O(2) to H(2)O at the trinuclear copper cluster active site in native laccase. Lee SK; George SD; Antholine WE; Hedman B; Hodgson KO; Solomon EI J Am Chem Soc; 2002 May; 124(21):6180-93. PubMed ID: 12022853 [TBL] [Abstract][Full Text] [Related]
13. Two-Electron Reduction versus One-Electron Oxidation of the Type 3 Pair in the Multicopper Oxidases. Kjaergaard CH; Jones SM; Gounel S; Mano N; Solomon EI J Am Chem Soc; 2015 Jul; 137(27):8783-94. PubMed ID: 26075678 [TBL] [Abstract][Full Text] [Related]
14. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis. Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715 [TBL] [Abstract][Full Text] [Related]
15. The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Yoon J; Liboiron BD; Sarangi R; Hodgson KO; Hedman B; Solomon EI Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13609-14. PubMed ID: 17702865 [TBL] [Abstract][Full Text] [Related]
16. Electron transfer and reaction mechanism of laccases. Jones SM; Solomon EI Cell Mol Life Sci; 2015 Mar; 72(5):869-83. PubMed ID: 25572295 [TBL] [Abstract][Full Text] [Related]
17. Variable-temperature, variable-field magnetic circular dichroism studies of tris-hydroxy- and mu3-oxo-bridged trinuclear Cu(II) complexes: evaluation of proposed structures of the native intermediate of the multicopper oxidases. Yoon J; Mirica LM; Stack TD; Solomon EI J Am Chem Soc; 2005 Oct; 127(39):13680-93. PubMed ID: 16190734 [TBL] [Abstract][Full Text] [Related]
18. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms. Chen P; Solomon EI Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13105-10. PubMed ID: 15340147 [TBL] [Abstract][Full Text] [Related]
19. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate. Chen P; Bell J; Eipper BA; Solomon EI Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448 [TBL] [Abstract][Full Text] [Related]
20. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Decker A; Solomon EI Curr Opin Chem Biol; 2005 Apr; 9(2):152-63. PubMed ID: 15811799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]